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Abstract

Social cohesion is a critical property of successful and sus-
tainable social groups, yet remains elusive to define, quan-
tify and metricate. This paper operationalises social cohe-
sion, on the basis that there is some behavioural connection
between voluntary association under different social arrange-
ments and the emergence of social cohesion. It first defines
a dual collective action and cooperative survival scenario,
demanding informed choice of institutional rules (social ar-
rangements) and institutional co-members. This is imple-
mented and animated by a self-organising multi-agent sys-
tem, where agents can be either cooperative or uncooperative
(i.e., more or less compliant with the application of selected
rules). An information-theoretic technique is then used to
determine the emergence and strength of cohesion, and ex-
perimental parameters are varied to determine the conditions
under which cohesion emerges more or less strongly. It is
found that cohesion is most clearly distinguished at the scale
of pairs and triplets, and that it emerges most strongly in un-
certain environments where there is an approximately even
split between cooperative and uncooperative agents.

Introduction
In The Dawn of Everything, Graeber and Wengrow (2021)
describe the ability of certain indigenous peoples (for ex-
ample, the Amazonian Nambikwara peoples) to shift effec-
tively between different social arrangements according to
the seasons. For instance, during the dry season when re-
sources were more scarce, chiefs in Nambikwara society
acted as authoritarian leaders who could command small
bands of foragers. In contrast, during the wet season, re-
sources became more plentiful, and people were left to their
own pursuits. Thus, this transition between seasons coin-
cided with a transition among the Nambikwara people to an
alternative social system, in which leaders became media-
tors, who did not issue orders but instead resolved issues
in a more diplomatic manner. It can be concluded that the
Nambikwara peoples displayed a sense of social cohesion,
and that maintaining their associations with one another ir-
respective of the past, present or future social arrangements
is a critical feature of that cohesion.

In general, social cohesion appears to be one of the most
important determinants of successful and sustainable human

communities and social systems, yet it still appears to be
one of the hardest to define and metricate, cf. Nowak et al.
(2019). Indeed, the phenomenon of social cohesion is dif-
ficult to directly observe and measure, not just because of
a wide variance in definition, but also because it is abstract
(like other socially constructed conceptual resource, for ex-
ample norms, or social capital), and also because it is latent:
it can only be indirectly inferred from the effects that it has.

However, from the evidence of the Nambikwara people,
we speculate that there some behavioural connection be-
tween voluntary association under different social arrange-
ments and the emergence of social cohesion. In making
this connection, the process of operationalisation can infer
the existence and extent of social cohesion, by determining
some observable and measurable effects it has on individ-
ual decision-making, group formation and collective action.
We therefore propose that social cohesion is an emergent
phenomenon and can be measured and understood using an
information theoretic framework, that has previously been
used to detect and quantify emergence in complex systems
by measuring non-linear interdependencies across groups of
agents of varying sizes (Rosas et al., 2020).

Accordingly, this paper is structured as follows. The
next section expands on the background to this paper, with
a more detailed review of social cohesion and information
theory. After that, a dual collective action and coopera-
tive survival scenario is defined, demanding informed choice
of institutional rules (social arrangements) and institutional
co-members. This is implemented and animated by a self-
organising multi-agent system, where agents can be either
cooperative or uncooperative (i.e., more or less compliant
with the application of selected rules). An information-
theoretic technique is then used to determine the emergence
and strength of cohesion, and experimental parameters are
varied to determine the conditions under which cohesion
emerges more or less strongly. Experimental results show
that cohesion is most clearly distinguished at the scale of
pairs and triplets, and that it emerges most strongly in un-
certain environments where there is an approximately even
split between cooperative and uncooperative agents.



Background
This section provides further background to this paper, with
a survey of some approaches to social cohesion and a brief
introduction to information theory, and in particular the
framework of Partial Information Decomposition (PID).

Social Cohesion
There are numerous analyses of social cohesion in the so-
cial science literature, each taking its own approach towards
metricating the concept, making direct comparison difficult.
However, a survey of the various domains can inform a fresh
perspective on what social cohesion ‘is’ – or rather ‘does’ –
and how to measure it.

So, for example, Jenson (2011) proposed three such do-
mains: social inclusion, cultural and ethnic homogeneity,
and participation and belonging. Dragolov et al (2018) fol-
low a similar model, also breaking down the concept into
three domains: social relations, connectedness and focus on
the common good, which are further broken down into sub-
domains. Schneifer et al. (2017) summarise further attempts
to identify the different components: and identify six do-
mains that feature commonly across the literature: social
relations, attachment and belonging, orientation toward the
common good, shared values, equality and inequality, and
objective and subjective quality of life.

Other researchers choose to frame the concept in a differ-
ent light. Chan et al (2006) propose a two-by-two frame-
work, breaking it down into two components, subjective ex-
perience and objective manifestations, across two dimen-
sions: a horizontal dimension, characterising social cohe-
sion within civil society, and a vertical dimension, i.e., the
cohesion that exists between the citizens and their govern-
ing institutions. This conceptualisation is more of a broad
framework, which focuses less on capturing the social com-
ponents of cohesion, instead opting to focus on the differ-
ent scales at which can operate: this is an important factor
identified by Abrams et al. (2023). Fonseca et al. (2019)
identify three ‘levels’ that constitute social cohesion: indi-
vidual, community, and institution. This too emphasises the
importance of capturing social cohesion on different scales.

Given this variance in definition and ‘units’, for a software
agent to represent and reason with social cohesion, we need
to define and measure a property that has no general agree-
ment on definition, and is not itself directly measurable.
In this sense, social cohesion shares similarities with trust,
norms and and social capital (Petruzzi et al., 2017). From
this perspective, social cohesion appears to short-cut compu-
tations and coordinate expectations regarding constitutional
choice in unbounded sequential interactions (Mertzani et al.,
2024), and so is both a determinant for and a product of
those interactions. As a kind of recursively emergent, ab-
stract and latent social construction, we propose that social
cohesion can be usefully analysed using information theory,
cf. (Scott et al., 2024).

Information Theory
Information theory was established as a field after the semi-
nal paper A Mathematical Theory Of Communication (Shan-
non, 1948). Since, it has found applications in a wide vari-
ety of domains, from physics to communications, economics
and neuroscience. It provides us with several quantities that
characterise the amount of information within and between
random variables, which the analysis of social cohesion in
this project depends upon. The definitions and diagram be-
low are taken from Cover and Thomas (2006).

Consider a random variable X with alphabet X , i.e. the
set of outcomes. X takes a specific outcome x from the
alphabet with probability p(x). The entropy H(X) is:

H(X) = −
∑
x∈X

p(x) log p(x). (1)

This characterises the amount of uncertainty in the ran-
dom variable. This definition can be extended to define the
conditional entropy H(Y |X) between two random variables
X and Y , which is defined by:

H(Y | X) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(y | x) (2)

This allows us to define the mutual information I(X;Y )
between two discrete random variables:

I(X;Y ) = H(Y )−H(Y |X) (3)

This quantifies the amount of information that X contains
about Y . This is symmetric, i.e. I(X;Y ) = I(Y ;X), and
so it could equally be said that it quantifies the amount of
information Y contains about X . The relationship between
all of these quantities is illustrated by the Venn diagram in
Figure 1, where H(X,Y ) is the joint entropy:

Figure 1: Illustrating the relationship between entropy and
mutual information.

The mutual information between multiple random vari-
ables and a target variable can be defined using the chain
rule for mutual information but it is difficult to directly cal-
culate because of its bivariate nature:

I(X1, X2, . . . , Xn;Y ) =

n∑
i=1

I(Xi;Y | X1, X2, . . . , Xi−1)

(4)



Partial Information Decomposition
Partial Information Decomposition (PID) (Williams and
Beer, 2010) allows a more exact expression of the mutual
information for more than two variables. It does so by
decomposing mutual information into indivisible informa-
tion atoms which allow us to precisely track all the beyond-
pairwise interactions (see Figure 2) through a formalism of
sources and targets:

1. Unique information, which is the information that one
source variable contains about the target, which no other
source variable does.

2. Redundant information, which is the amount of informa-
tion that source variables share about the target.

3. Synergistic information, which is the amount of informa-
tion that is present in the interaction between the source
variables.

Rdn(X1, X2;Y )Unq(X1;Y ) Unq(X2;Y )

Syn(X1, X2;Y )

I(X1, X2;Y )I(X1;Y ) I(X2;Y )

Figure 2: Partial Information Decomposition of two sources
X1,X2 and one target Y (Williams and Beer, 2010)

.

In the simplest case, with two sources and one target:

I(X1, X2;Y ) = Unq(X1;Y ) + Unq(X2;Y ) + (5)
Rdn(X1, X2;Y ) + Syn(X1, X2;Y )

For more than two sources, we have to keep track of all the
combinations of two or more variables. Using PID also re-
quires the choice of either a synergy or a redundancy func-
tion. Many have been proposed in the literature; for simplic-
ity and computational efficiency, we use Minimum Mutual
Information (MMI) to quantify redundancy (Barrett, 2015).

According to Rosas et al’s (2020) theory of causal emer-
gence, the synergy in a collective system variable can be
used to quantify emergent behaviour, and we shall also use
it to quantify social cohesion.

Experimental Setting: Megabike
This section describes the experimental setting for measur-
ing the emergence of social cohesion using the PID frame-
work. Specifically, we use a dual collective action and co-
operative survival scenario Megabike (Scott and Pitt, 2023).

The Megabike Scenario
The Megabike scenario is inspired by party bikes for multi-
ple riders. It involves a group of eight otherwise autonomous
agents taking control of a single vehicle (a megabike), and
navigating a typical AI/multi-agent gridworld in search of
rewards (lootboxes). Each agent is individually capable of
pedalling, braking, and steering the megabike; consequently,
the agents must collectively agree on (and each agent implic-
itly agrees to voluntarily comply with) the social arrange-
ments (also regime) that determine direction (steerage), ef-
fort (pedalling and braking), lootbox targeting, and loot al-
location to replenish energy. This is illustrated in Figure 3.
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Figure 3: Megabike: agents voluntarily apply to bikes with
specific political regimes, and work together (or not) in
search of lootboxes. Energy exhaustion causes elimination.

Core Elements
The Megabike scenario has several core constituent parts:
agents, who occupy megabikes, which have regimes (social
arrangements), to direct a search for lootboxes (to replenish
the energy of agents). These are briefly described in turn.

Agents These are the ‘players’ of the simulation. They
form associations with other agents on megabikes, and pedal
around the simulation world, depleting energy as they pedal.
They can regain some energy by colliding with a lootbox.
When their energy meter reaches 0, they die and are removed
from the simulation. Agents are characterised by a Platonic
Tendency, which influences how cooperative or selfless they
are. Each agent also maintains a trust network, recording its
trust in other agents based on interactions with them (Agent
Trust), and their trust in different regimes according to their
experience of them (Regime Trust).

Megabikes The vehicle that the agents operate. It is an 8-
seater bike, and each agent riding on it can apply a steering
angle, pedalling force, and braking force.

Lootboxes These are the simulated resources that can be
collected in order to replenish energy to the agents, if they



are of corresponding colours. Once collected, they are re-
moved from the world.

Regimes Each megabike is categorised into one of the
three possible regimes. These determine how many repre-
sentative agents it has, and how certain decisions are made,
specifically accepting or rejecting applications to join the
megabike, deciding the direction and force to pedal, and
lootbox allocation. The three regimes are:

• One: Executive decisions are made by a single agent.
• Some: Collective decisions are made by a majority vote

of three representative agents.
• Many: Collective decisions are made a majority vote of

all of the agents.

Some decisions require a small energetic cost. In some
cases, agents also have the opportunity to not comply with
the decision, but they risk being an unfavoured teammate in
subsequent iterations due to a loss of Agent Trust.

Scenario Flow
The scenario is composed of iterations and rounds. One
full simulation consists of 100 iterations; for each iteration,
100 rounds are executed. Iterations are a ‘low frequency’
loop, where agents have the chance to form new associations
with agents on a different megabike. Rounds are a ‘high
frequency’ loop, where agents pedal through the world and
collect lootboxes in a struggle for survival.

Populating the world When spawning agents, they are
initialised with a Platonic Tendency between 0 and 1. This
represents their likelihood to co-operate or act selflessly in
the simulation, where 1 is most selfless and 0 is most self-
ish. It follows a bimodal distribution: a certain proportion
of agents are spawned with the ‘good’ Platonic Tendency p
(p > 0.5), and the rest of the agents are spawned in with the
‘bad’ Platonic Tendency 1−p. They are also initialised with
empty agent trust networks and regime trust networks, and
are not initially assigned to any megabike.

Megabikes have a standard maximum capacity of 8
agents, while there are 3 regimes to consider. As such, we
spawn a number N = 8 × 3n agents for 3n megabikes.
Megabikes are hardcoded as one of the three regime types
and this is immutable throughout the simulation.

The number of lootboxes that spawn in is governed by
a ratio of lootboxes : agents set at 2.5 : 1. This ensures
that the quantity of lootboxes scaled appropriately with the
number of agents in the simulation. They are spawned with
a random amount of ‘loot’ (i.e., energy), such that there is
enough to distribute a ‘reasonable’ amount to each agent but
not so much that even a full megabike of energy-depleted
agents will be saturated by it. Finally, they are randomly
assigned a fixed spawn location.

Iterations
Each simulation consists of 100 iterations. Each iteration
consists of a series of phases: disembarkation, representative
selection, and association formation, as follows:

Disembarkation Agents disembark from the megabikes
they rode in the previous iteration and form a pool of all
surviving agents.

Representative Selection In order to perform the accep-
tance process properly for each regime, there needs to be
representatives on the one and some megabikes. Therefore,
a small group of agents are chosen randomly to be these ini-
tial representatives. These agents are then responsible for
deciding on the admittance of agents to their megabikes.

Forming Associations The remaining majority of agents
who were not selected as representatives now need to find
a megabike to join: they form a queue in random order and
apply to join a megabike. To decide on which bike to join,
they assign a Trust Score s to each megabike according to:

s = wATA + wRTR (6)

where wA and wR are experimentally adjustable weights.
TA is the Agent Trust, calculated by an agent at the front

of the queue, is the average trust in all n agents currently on
a megabike, where ti is the trust of agent i (1 ≤ i ≤ n):

TA =
1

n

n∑
i=1

ti (7)

TR is the Regime Trust, calculated as 1−G, where G is the
Gini coefficient (Sen, 1997) of the megabike’s regime. This
is calculated by first constructing a vector of incomes for
all agents riding under that regime in the previous iteration.
This can then be used to calculate a Gini Coefficient for each
regime, using the formula:

G =

∑n
i=1

∑n
j=1 |xi − xj |
2n2x̄

(8)

where xi is the income of agent i, x̄ is the mean income,
and n is the number of incomes. This produces a value G
between 0 and 1 for each regime, where a higher value rep-
resents greater inequality. This is inverted by performing
1−G, such that a lower value represents greater inequality.

The Gini coefficient is used as a trust metric because it
captures, within an appropriate range, an agent’s willingness
to expose itself to risk manifested explicitly as a probability.
As the applying agents will not be representatives, they must
assess regimes by how likely they are to survive under that
regime. This is effectively asking ‘how equitable does this
regime tend to be with its lootbox energy distributions’, and
this is captured by the Gini index. However, this is not the



only metric that can be used for evaluating distributive jus-
tice, as identified by (Rescher, 1966), and future work will
consider other metrics (Pitt et al., 2014).

In this way, the agents give a weighting to both their trust
in the other agents on the megabikes, and their trust in the
regime. After scoring each megabike, the agent ranks them
and applies to the megabike with the highest score. This
prompts the agents on this megabike to make an acceptance
decision, which is implemented according to the governance
regime of the megabike. Note that if an agent applies to join
a megabike with the Many regime and zero agents are cur-
rently assigned to it, then the agent applying is automatically
assigned to that megabike.

An agent’s application to a megabike is either accepted or
rejected. If accepted, the agent is removed from the queue
and assigned to the megabike; if rejected, it is moved to the
back of the queue and gets the chance to re-apply again a
fixed number of times (equal to the number of megabikes,
in the event it wants to apply to a different megabike each
time). At the end of the application process, agents that have
not been assigned to a megabike are assigned to one at ran-
dom. The associations are now formed and the megabikes
are ready to begin pedalling around the world.

Rounds
Each iteration consists of 100 rounds, during which agents
pedal around the world on their megabike, build (or lose)
trust in their fellow bikers, and try to stay alive. The se-
quence of events in each round is: determine and apply ped-
alling or braking force and steering direction, lootbox allo-
cation, termination and gossip.

Direction Decision and Movement Each megabike’s pri-
mary task each round is to decide on a direction to travel.
The decision is made according to the regime type One,
Some or Many. The key factors for each agent involved
in the decision-making are if its Platonic Tendency > 0.5,
or if its average Agent Trust, TA > 0.5. If so, then it will tar-
get the lootbox with highest gain (i.e. the agent is selfless or
has high trust); otherwise, it will target the nearest lootbox
of its own colour.

Note also for each agent participating in the decision there
is a small energetic cost. This accounts for the effort in pro-
cessing and messaging; but the cost could be reciprocated
by increased trust following a ‘good’ decision.

Following this institutional decision, each agent decides
for itself the pedalling and steering forces it would prefer
to apply. An agent can either comply with the institutional
decision and apply forces on that basis, or apply their own
preference. By applying a force, they lose energy in propor-
tion to their pedalling power.

The server then uses the physics engine to update the lo-
cation of each megabike according to the collective forces
that have been applied.

Lootbox Check and Allocation After making a move-
ment transition, a megabike collects a lootbox (or lootboxes)
if its trajectory includes a lootbox’s locations. Collecting
a lootbox initiates an allocation process on the megabike
whose outcome again depends on its governance regime.

If the lootbox is not the agent’s colour, it proposes an
equal distribution. Otherwise, the key factors for each agent
involved in the decision-making process are its Platonic Ten-
dency and average Agent Trust. If either of these values is
greater than 0.5, then the agent will propose an equal dis-
tribution; otherwise, the agent will propose half of an even
split to other agents, and the remainder to itself. In Some and
Many regimes, the allocations proposed are aggregated and
divided by the number of decision-makers to produce the
final allocation. Once the allocation process is completed,
each agent increases its energy according to its allocation.
Finally, collected lootboxes are despawned.

If several megabikes have collected the same lootbox(es),
their combined resources is first split evenly, and then the
allocation process is applied to each megabike’s share.

Note that in the current implementation, there is no ener-
getic cost for participating in deciding the allocation. Such a
cost could be introduced, and that cost could be reciprocated
by increased trust following a ‘fair’ decision, according to
objective or subjective assessments of fairness (see, respec-
tively, Pitt et al. (2014) and Pitt (2017)) – and whether the
agents want to invest some of their resources in making such
fairness judgements.

Terminating Agents Agents have their energy meters
checked, and if they have zero energy remaining they are
terminated and removed from the simulation. They do not
respawn in the following iteration.

If a representative from a megabikes dies, then it is re-
placed by another non-representative agent on the megabike,
provided there are enough agents on the megabike to accom-
modate this.

Gossiping and Trust Update At the end of the round,
agents gossip about the events of the round, sending mes-
sages to their co-riders and processing messages received
from them. Agents send messages which state which loot-
box they targeted, what forces they applied, and whether or
not they conformed with the institutional decision. An agent
receiving such messages use this information to update trust
values in other agents in its trust network. This value is
clamped between [0.0, 1.0] and incremented or decremented
by an impact factor δ, i.e., the trust t′i of some agent a in the
ith agent in a’s trust network in one round depends on its
trust ti in the previous round:

t′i = clamp(ti + δ, 0.0, 1.0)

where δ is defined for each reported event.



In the current implementation, these communications are
assumed to be reliable signals because all actions are, effec-
tively, fully monitored. A more advanced gossiping system
would involve selective monitoring (with an energetic cost
proportional to reliability), selective communication (i.e.,
only with some co-riders), and yet another trust decision on
whether to trust the signaller or not.

Experimental Results
This section reports the experimental results. First the ex-
perimental method is summarised, and then the specific re-
sults: firstly establishing the baseline behaviour (better than
random), and then varying certain parameters specified in a
config file, for example the proportion of ‘good’ agents, the
number of megabikes, and the capacity of each megabike.
The primary set of command-line parameters is shown in
Table 1.

Parameter Range
BikerAgentCount int
LootBoxRatio float64
GlobalRuleCount int
GoodPlatonicTendency float64
ProportionOfGoodAgents float64
LootBoxCount int
MegaBikeCount int

Table 1: Experimental Parameters

The experimentally-determined values of wA and wR

were set to 0.9 and 0.1 respectively, for all agents. The rel-
ative strength on the Agent Trust was needed because if the
weight for the Regime Trust was too high then the agents
wouldn’t form semi-stable groups without excessive inter-
ference from the previous iteration’s regime performance.

The impact factors δ for each reported event are shown
in Table 2. Choosing the same lootbox is considered a less
reliable indicator of trust than working together or conform-
ing to pedal directions proposed by a regime, and so has a
correspondingly smaller impact.

Event Impact (δ)
Same lootbox target +0.005
Pedal power < 20% −0.1
Pedal power > 80% +0.1
Conformance with regime decision −0.1
Non-conformance with regime decision +0.1

Table 2: Trust impact factors for reported events

Experimental Method
To quantify social cohesion in the Megabike scenario as a
phenomenon of repeated voluntary association using PID,

we must first define the source and target variables. X1 and
X2 as the identities of agents in the simulator, and the target
Y as their likelihood to associate on a bike:

Y =

{
1 if X1 and X2 are on the same megabike
0 if they are not on the same megabikes

(9)

This probability distribution can be estimated directly by
counting co-occurences of agents in the same megabike over
the iterations, to generate a joint probability distribution over
the three variables. Same for marginal distributions. All
probability distributions are then used to calculate the mu-
tual information terms according to Eqs. (1-4), and then the
cohesion metric, which is the synergy and we denote by Ψ:

Ψ = Syn(X1, X2;Y )

= I(X1, X2;Y )−
∑2

i=1 Unq(Xi;Y )− Rdn(X1, X2;Y )

= I(X1, X2;Y )−
∑2

i=1 I(Xi;Y ) + Rdn(X1, X2;Y )
(10)

This aims to isolate the information that is only present in
both source variables when taken together, but not apart.
This quantifies how much more agent pairs, as a group,
predict their associations versus their individual tendencies.
It is indicative of cooperation in the system at the level
of the source variables (the agents) to influence the target
(whether they are on the same megabike). To better under-
stand higher-order social relationships, we will also consider
groups larger than two.

Ψ > 0 indicates that there is some amount of informa-
tion or predictive ability that is only explained by the agents
together but cannot be explained by their individual tenden-
cies; there is meaningful structure in the association pat-
terns, owing to the interaction between pairs (or groups) of
agents. The more the synergy could explain their associa-
tions, the stronger the degree of emergence cohesion.

Each experiment was performed by analysing the simula-
tion log in a Jupyter Notebook and producing a Ψ for each
run using the Python discrete information theory package
dit (James et al., 2018). The results are plotted using a
raincloud plot (Allen et al., 2021), which shows datapoints
alongside a box and whisker and distribution overlay.

Results
For each of the experiments, multiple (10, 20 or 30) runs of
the simulator were performed for each experimental setup,
to isolate anomalies and capture the real trends in the data.

Random vs Voluntary Association In order to verify that
this approach works as intended, the first experiment per-
formed was a comparison between the agents undergoing
voluntary re-association as normal, and an altered setup of
the simulator where they are assigned to megabikes at ran-
dom. Intuitively, if the method works, we should expect it



(a) Voluntary vs. Random Association (b) Scale Analysis of Cohesion (c) Proportion of ‘Good’ Agents

(d) Number of Megabikes (e) Increasing megabike Capacity

Figure 4: Experimental Results

to produce non-zero values for voluntary self-organised as-
sociation, and approximately zero for random association.
Figure 4a presents the results for this experiment in both se-
tups, with 24 agents and 3 megabikes (1 per regime) in each.

These results validate our approach: we indeed record the
median Ψ near zero for the random association setup, and
non-zero values for the voluntary. This is a promising result
and gives credence to the approach.

Scale of Cohesion We can now proceed to the first real
line of inquiry - at what scale is the cohesion developing?
This is of interest to analyses of cohesion (Abrams et al.,
2023) and our method lends itself well to such an investiga-
tion. By increasing the number of source variables, we can
detect the extent to which different sized groups are emerg-
ing. For example, in the case of triplets, we form all unique
groups of 3 when building the probability distribution from
the simulation log, (as opposed to all unique pairs), and use
3 source variables rather than two in our calculation of Ψ.
The same can be done for 4, 5, or larger group sizes. We can
then run the simulator to generate multiple logs, and analyse
them at each scale. Figure 4b presents this analysis for the
standard experimental setup (24 agents, 3 megabikes).

These results are highly informative, and seem to suggest
that groups of size 2 and 3 are emerging as the most coher-
ent units, with groups of 4 slightly less so and to an even less
extent groups of 5. This fits appropriately with our intuition
that smaller groups form more easily, whilst also interest-

ingly suggesting that triplets are forming as coherent units
as pairs. In the following section, wherein we investigate the
conditions that most favourable to cohesion developing, we
must fix the scale at which we are looking in order to make
results comparable. Therefore, in all the experiments below
the measurement of cohesion is fixed at the scale of pairs, as
this is the most simple and informative scale to examine.

Proportion of ‘Good’ Agents The first parameter of in-
terest is the proportion of ‘Good’ agents in the simulator. As
explained above, there are a certain proportion of agents in
the simulator with the ‘good’ Platonic Tendency p, and the
remaining agents are instantiated with the ‘bad’ tendency,
which is simply 1−p. This provides two variables to adjust:
the value of ‘good’ Platonic Tendency, and the proportion of
agents with this ‘good’ tendency. The ‘good’ Platonic Ten-
dency value is fixed at 1 in this experiment, with the ‘bad’
agents therefore having 0, to isolate the effect of the propor-
tion variable.

The experiment was performed by adjusting this propor-
tion from 0% to 100% in steps of 10 and plotting Ψ for each
case. The results are presented in Figure 4c and suggest that:

• When there are few good agents in the simulator, and pre-
dominantly bad agents, very minimal cohesion develops.
This could be explained as the agents all developing a
low trust in one another, and so repeatedly avoiding each
other. Eventually, with such low trust universally prevail-



ing, they begin to get rejected by the initial representa-
tives, and rotate between megabikes.

• When there are predominantly good agents, and few bad
agents, a similarly low level of cohesion develops. This
could be interpreted as all agents in the simulator develop-
ing high trust of all the other members they meet, mean-
ing that they are likely to accept anyone that applies to
their megabike. Thus, the random queuing order they get
placed in at the start is likely to have the biggest influence
upon grouping, as whoever applies they will accept. In
this way, they do not form coherent groups as they do not
need to, and as such cohesion is low.

• In the mixed setups, where there are more similar num-
bers of good and bad agents, the cohesion seems to peak.
This is an intriguing result, and seems to suggest some-
thing notable - cohesion peaks in mixed scenarios as a
protection mechanism against uncertainty. It becomes
more important in these scenarios, and thus develops
more strongly.

This is perhaps counter-intuitive to our initial assump-
tions, as one may expect the fully ‘good’ scenario to have
strong cohesion develop if you understand it as mutual
‘friendship’. What these results suggest is that in this sce-
nario, cohesion is essentially acting as a protection mecha-
nism against uncertainty, as it becomes most critical to sep-
arate the good from the bad in uncertain scenarios with a
mixed agent pool, It also allows more diversity to flourish in
tandem with coherence, a balance which is often a marker
of flexibility and adaptability reminiscent of many complex
adaptive systems in nature.

Number of Megabikes The second parameter we varied
was the number of megabikes in the simulator. This scales
with the number of agents: 3, 6, and 9 megabikes were in-
stantiated in the simulator, with 24, 48, and 72 agents re-
spectively. The results are presented in Figure 4d.

These findings indicate that it is more difficult for co-
hesion to emerge within a larger player-megabike environ-
ment. This is consistent with our intuition - more players
and megabikes available mean it is harder to find people to
group up with repeatedly.

Megabike Capacity The final parameter eplored was the
capacity of the megabikes. For these experiments, we re-
turned to the standard 3-megabikes setup, but increased the
capacity of the megabikes in increments of 4, up to a maxi-
mum of 24 agents. The results produced are shown in Fig-
ure 4e. The relatively similar Ψ recorded in each case seems
to suggest that the megabike capacity has minimal effect on
the level of cohesion (re-association) that emerges.

Further investigations could involve experimenting with
capacities below 8 to create an excess of labour, to see
if the trend (or lack thereof) changes in the reverse direc-
tion. Moreover, how well the method and cohesion met-

rics scales in much larger systems with sparser social net-
works, more sophisticated agent behaviours, movement and
decision-making (and, for example, being capable of decep-
tion (Sarkadi, 2024)), and more complex environments, in-
cluding negotiation between megabikes.

Summary and Conclusions
In summary, this paper has addressed the behavioural phe-
nomenon of social cohesion in human societies using agent-
based modelling of self-organising systems. In particular,
the information theoretic framework of Partial Information
Decomposition (PID) was used to measure social cohesion
as an emergent property of voluntary association under dif-
ferent types of social arrangements (or political regime).

The specific contributions of this paper are:

1. the design and specification of a dual collective action
and cooperative survival scenario that demands agents
make sequential decisions about voluntary associations
with one another;

2. the implementation of this scenario by programming a
generic multi-agent simulator in Go;

3. integrating an information theoretic method for identify-
ing the emergence of social cohesion and quantifying its
strength; and

4. experimental results which established the conditions un-
der which social cohesion emerges more or less strongly.

Social cohesion has been deeply studied in the social sci-
ences, and various definitions and metrics have been pro-
posed. However, sometimes, it is better to define a socially-
constructed concept, like norms, trust and, as here, social co-
hesion not by what it is, but what it does. We interpret these
experimental results as indirect yet compelling evidence that
as an emergent phenomenon what social cohesion does is to
create the conditions for de-risking regime change, as ob-
served by Graeber and Wengrow (2021) in the Amazonian
Nambikwara and other indigenous peoples. It might also de-
crease the individual and collective processing costs in de-
termining whether or not decisions are ‘good’ or ‘fair’.

In conclusion, by abstractly modelling human behaviour
in the form of agents in a simulator, this work has shed some
light on the elusive concept of social cohesion as an emer-
gent phenomenon. It also provides some insight into the
conditions under which it develops, and the conditions under
which it strengthens or weakens. Methodologically, follow-
ing in the line of work initiated by Scott et al (2024), it has
reinforced the capability of information-theoretic techniques
to measure socially-constructed properties (like leadership
and social cohesion) in self-organising multi-agent systems,
pointing to a novel synthesis of multi-agent systems, infor-
mation theory and cybernetics for understanding human be-
haviour and social system dynamics.
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