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Abstract

We present a two-stage, data-driven framework for evaluating
whether peacekeeping, sanctions, and humanitarian aid miti-
gate conflict-related harms across heterogeneous governance
contexts. A first-stage statistical model with two-way fixed
effects and ridge regularization learns persistence, spatial
spillovers, and common shocks from CIRIGHTS-, ACLED-,
and UCDP-style panels. These estimates (βself, βspat, {γt})
anchor a second-stage agent-based simulator that embeds
countries in multilayer networks with an intervention-effects
estimator and dyadic territorial risk. The design is predictive
rather than causal but enables comparative, scenario-based
analysis.

The model achieves moderate performance (R2 ≈ 0.21),
with temporal anchoring and nontrivial spillovers. Diag-
nostics (calibration, QQ, heteroskedasticity, Moran’s I) and
counterfactual probes (βspat=0; W -sensitivity) confirm ro-
bustness. Network analyses show heavy-tailed degrees and
modest coalition modularity, while shock–response experi-
ments treat atrocities as shocks and interventions as calibrated
counter-shocks. Complexity metrics capture regime dynam-
ics and identify controllability windows, supporting context-
sensitive assessment of intervention portfolios.

Keywords: Mass Atrocity Prevention; Agent-Based
Modeling; Spatial Diffusion; Intervention Portfolios; Com-
parative Policy Analysis

Introduction
Reducing conflict-related harms remains difficult despite ad-
vances in early warning and response (Appe et al., 2023;
Campbell, 2023). Outcomes vary with regime type, civil
society capacity, and administrative structures (Golder and
Williams, 2006; Rubaii et al., 2021b; Krain, 2006). De-
centralized contexts can enable faster, locally calibrated re-
sponses, while centralized systems may mobilize resources
but face bureaucratic delays (Vining and Weimer, 1999). Yet
many interventions remain uniform and top-down, overlook-
ing institutional and civic variation. Comparative frame-
works stress tailoring peacekeeping, sanctions, and aid to
governance capacity, NGO density, and socio-legal norms
(Breidahl and Brodkin, 2023; Miaz, 2024).

This paper develops an agent-based model (ABM) that
simulates state, non-state, and international actors using
CIRIGHTS, ACLED, UCDP, and macro indicators (Cin-
granelli and Richards, 2010; Raleigh et al., 2010; Sundberg
and Melander, 2013; World Bank, 2023; International Mon-
etary Fund, 2023). By varying governance, networks, and
geography, we assess how similar policies diverge across
contexts (Anderton and Brauer, 2019; Fortna, 2004). The
contribution is a predictive, comparative platform that situ-
ates intervention effects within heterogeneous institutional
settings.

Literature Review

Comparative Dimensions in Policy Effectiveness

Governance form and civil society infrastructure mediate
whether interventions reduce violence (Buhaug and Gled-
itsch, 2008; Weidmann and Ward, 2010). Decentralization
can accelerate mobilization of CSOs (Rubaii et al., 2021b),
while centralized systems may coordinate but slow adapta-
tion (Sichling, 2024a; Golder and Williams, 2006). Rep-
resentation and administrative equity affect compliance and
grievances, shaping intervention headroom (Anderton and
Brauer, 2019).

Local–Systemic Interactions

Local dynamics—resource competition, group relations, in-
stitutional trust—interact with systemic factors such as in-
ternational norms and cross-border linkages (Chopra and
Naidu, 2023; Rubaii et al., 2021a; Miaz, 2024). International
organizations partnering with community-based groups can
improve early warning and program legitimacy when civic
space is open (Appe et al., 2023), while restrictive environ-
ments limit NGO impact. Regulatory capacity matters: con-
stitutional commitments without enforcement mechanisms
underperform, while strong CSO and nonprofit networks can
offset weak formal institutions (Campbell, 2023).



Agent-Based Modeling in Comparative Conflict
Policy

ABMs allow policy comparison by simulating heteroge-
neous agents and contexts (Cioffi-Revilla and Rouleau,
2009; von Briesen, 2020). Contextualized ABMs extend
evaluation of peacekeeping, sanctions, and aid, showing
conditional effectiveness (Fortna, 2004; Hultman et al.,
2016). Our model integrates spatial diffusion, multilayer
networks, and intervention learning, calibrated to conflict
and rights data (Raleigh et al., 2010; Sundberg and Me-
lander, 2013; Cingranelli and Richards, 2010) plus macro
indicators (World Bank, 2023; International Monetary Fund,
2023). Systematic parameter variation generates counterfac-
tuals clarifying divergent outcomes (Buhaug and Gleditsch,
2008; Weidmann and Ward, 2010).

Implications for Policy and Practice

Comparative evidence cautions against uniform prescrip-
tions (Campbell, 2023). Peacekeeping is more effective
where oversight institutions are strong, while humanitarian
aid performs best where nonprofits retain autonomy (Fortna,
2004; Hultman et al., 2016; Sichling, 2024b). ABM sup-
ports diagnostic assessment of capacity, civic space, and le-
gal context, aligning interventions with institutional and so-
cietal conditions (Rabbi, 2024; van der Zwet et al., 2022).
Cross-context simulations thus help anticipate risks of esca-
lation and opportunities for effective civilian protection.

Methods

Conceptual Overview

Figure 1 summarizes the two-stage architecture. Stage 1
learns temporal persistence, spatial spillovers, and common
shocks from panel data; Stage 2 reuses these parameters as
a small-gain anchor inside the ABM, where agents interact
over multilayer networks and respond to shocks and counter-
shocks.

Variable Table

This agent-based model (ABM) integrates spatial diffusion,
dyadic territorial risk, multilayer networks, and data-driven
intervention effects. Countries are agents. Conflict inten-
sity and territorial attributes are drawn from UCDP-style
panels, human-rights from CIRIGHTS-style indicators, and
intervention activity from PRIF-like sources. Geographic
contiguity and codes follow the COW project Stinnett et al.
(2002). All coefficients are learned from data; no hand-
tuned constants are used. Table 1 lists the variables.

CIRIGHTS
(rights indicators)

ACLED/UCDP
(events, intensity)

COW Geo/REGION
(contiguity, distance)

Schema checks, missingness, standardization, clipping, SVD pruning

Stage 1: Statistical Estimation (TWFE + Ridge)
Spatial lag with within-transform; GCV ridge; bootstrap CIs

βself, βspat Year effects {γt}

Multilayer features
(conflict/intervention/org)

Intervention-effects estimator
(TWFE + ridge; stdzd.)

Stage 2: Agent-Based Simulator
Countries as agents with state gi,t; baseline update:
ŷbase
i,t+1 = βselfyi,t + βspatmi,t + γt

Small-gain coupling: gi,t+1 ← gi,t + λ(ŷbase
i,t+1 − gi,t)

Interventions: ∆i,t = g(ui,t; η) (standardized; ridge coefficients)
Interactions via W (geo), co-activity, org layers (learned weights)

Shock–response experiments
(atrocity shocks, counter-shocks)

Diagnostics & outputs
(fit, calibration, Moran’s I ,
W -sensitivity, networks)

Notes: Stage 1 provides empirical anchors
(βself, βspat, {γt}); Stage 2 applies small-gain cou-

pling, multilayer interactions, and intervention pulses.

Figure 1: Two-stage architecture: Stage 1 learns temporal per-
sistence, spatial spillovers, and common shocks from panel data;
Stage 2 reuses these parameters as a small-gain anchor inside the
ABM.

Table 1: Variables Used in the Agent-Based Model
Variable Name Variable Source/Computation Purpose

Country Identification and Geography
Country ID country, cow Country name or COW code Stinnett et al. (2002) Agent identifier
Region REGION Dataset region codes Regional summaries/fixed effects
Contiguity Aij COW Direct Contiguity Stinnett et al. (2002) Spatial adjacency (binary)
Distance (km) dij COW centroids (haversine) Inverse-distance spatial weights

Conflict Metrics
Intensity Level yi,t = intensity level UCDP-style panel Outcome to model/predict
Fatalities (if present) fatalities UCDP/ACLED-style Validation/outliers

Intervention Variables (PRIF-like)
Mediation MEDIATE6 PRIF-like Diplomatic engagement
Accords ACCORD6 PRIF-like Peace agreement activity
Humanitarian Aid HUMANAID PRIF/OECD-like Assistance intensity
UN Security Council UNSC PRIF-like UNSC actions/attention
Regional Orgs REGIOORG PRIF-like Regional IO engagement
Ground Force GROUNDFO PRIF-like Military (ground)
Air Force AIRFORCE PRIF-like Military (air)
Enforcement ENFORCE PRIF-like Composite enforcement

Human Rights (CIRIGHTS-like)
Physical Integrity physint sum CIRIGHTS-style Repression/abuse
Empowerment civpol/empinx CIRIGHTS-style Civil/political liberties

Multilayer Network Features (per year)
Conflict Degree conf deg From conflict dyads Centrality (conflict layer)
Intervention Degree intv deg Co-participation Centrality (intervention layer)
Org Degree org deg UNSC/REGIOORG activity Centrality (org layer)
Betweenness/Clustering {·}btw/{·}clu Per layer Brokerage/local cohesion

Computed Model Variables
Self Lag self lag = yi,t From panel Agent’s own past intensity
Neighbor Mean neigh mean =

∑
j Wijyj,t Spatial weights W-weighted neighbor signal

Predicted ŷi,t+1 Diffusion + g(u; η) One-step forecast
Residual yi,t − ŷi,t From panel/model Error diagnostics
Spatial Coefs βself, βspat Ridge + bootstrap Diffusion parameters w/ CIs
Year Effects γt Estimated (see below) Year intercepts for calibration
Territorial Risk pij Calibrated logistic Dyadic territorial risk

Geographic Weights and Spatial Diffusion

Define raw bilateral weights

w⋆
ij =


d−1ij , Aij = 1 and distance observed,
1, Aij = 1 and distance missing,
0, otherwise (or i = j),

Wij =
w⋆

ij∑
k ̸=i w

⋆
ik

.

Let mi,t =
∑

j ̸=i Wijyj,t. We estimate a reduced-form spa-
tial lag with two-way fixed effects (country and year) via the



within transformation:
ỹi,t = yi,t − ȳi· − ȳ·t + ȳ,

m̃i,t = mi,t − m̄i· − m̄·t + m̄.

ỹi,t+1 = βself ỹi,t + βspat m̃i,t + ε̃i,t+1. (1)

Estimation uses ridge with generalized cross-validation
(GCV). After fitting, we reconstruct year effects on the orig-
inal scale:

γt = E
[
yi,t+1 − βselfyi,t − βspatmi,t

∣∣∣ year = t
]
.

Percentile bootstrap CIs are reported for (βself, βspat).

Multilayer Networks and Learned Aggregation
We build annual layers: conflict participation (conf), inter-
vention co-participation (intv), and intergovernmental ac-
tivity (org). For each country-year we compute features
Φi,t (degree, betweenness, clustering). We learn weights by
ridge with GCV:

ŵ = argmin
w

∑
i,t

(
yi,t+1 − Φ⊤i,tw

)2
+ λ∥w∥22

 ,

with finite-row filtering, standardization, empirical clipping,
zero-variance pruning, and SVD-based collinearity pruning.

Dyadic Territorial Risk
Let zij,t ∈ {0, 1} indicate territorial dyads when UCDP-
style incompatibility equals territory and/or a non-null terri-
tory name exists Cederman (1997, 2003). With

xij =
[
1 dij ⊮{REGIONi = REGIONj}

]⊤
,

we fit a calibrated logistic model

pij = Pr(zij = 1 | xij) = σ(θ⊤xij),

with Platt scaling and Brier diagnostics if labels suffice; oth-
erwise we report an empirical base rate.

Intervention Effects Estimation and Application
We estimate a data-driven mapping g(ui,t; η) from PRIF-
like intervention vectors ui,t to next-year intensity, control-
ling for self and neighbor signals, using two-way fixed ef-
fects and robust ridge (GCV). Let

Xi,t =
[
yi,t, mi,t, MEDIATE6i,t, ACCORD6i,t, . . . ,

ENFORCEi,t

]
.

We within-transform yi,t+1 and all columns of Xi,t by coun-
try and year means. After finite filtering and standardization
(with stored means/scales), we fit ridge with GCV plus zero-
variance and SVD-based collinearity pruning. The learned
coefficients (with bootstrap CIs) quantify per-type associa-
tions in standardized space. At simulation time, we stan-
dardize ui,t using the stored means/scales (for the kept fea-
tures) and apply

∆i,t = g(ui,t; η) = coef⊤ standardize(ui,t).

Agent Update
Each agent i perceives si,t = (yi,t,mi,t) and updates con-
flict via the learned spatial coefficients and year effects:

ŷ base
i,t+1 = βself yi,t + βspat mi,t + γt.

Numerical Stability and Validation
Estimation applies finite filtering, standardization with clip-
ping, variance/collinearity pruning, and ridge with GCV un-
der two-way fixed effects; bootstrap CIs quantify uncer-
tainty. Territorial risk is fit via calibrated logistic regression
or base-rate fallback. Validation includes schema checks,
missingness profiles, and outlier scans. Reproducibility ma-
terials (parameter dumps, adjacency matrices, run manifests,
regeneration scripts) ensure figures and tables can be exactly
reproduced.

Evaluation Metrics
RMSE, MAE, bias, and R2 measure predictive accuracy;
grouped calibration and residual checks assess reliability.
Moran’s I and W -sensitivity test spatial robustness, while
network modularity and centralities describe propagation
structures. Complexity measures (recurrence, determinism,
entropy, Hurst) act as regime indicators, highlighting stabil-
ity and controllability.

Metrics
For observed yi,t and predicted ŷi,t:

RMSE =

√
1

M

∑
(yi,t − ŷi,t)2, MAE =

1

M

∑
|yi,t − ŷi,t|,

Bias =
1

M

∑
(yi,t − ŷi,t), R2 = 1−

∑
(yi,t − ŷi,t)

2∑
(yi,t − ȳ)2

.

We report global and region-level metrics. For the inter-
vention estimator, we also report control-only vs full-model
RMSE/R2 and improvements (in standardized space).

Empirically Coupled Agent Dynamics
The initial statistical model provides empirically estimated
macro-level dynamics (persistence, spatial spillovers, and
year shocks). We re-use the learned spatial diffusion param-
eters (βself, βspat) and reconstructed year effects {γt} as a
baseline (small-gain) nudge on agents’ internal conflict state
(see the Diffusion subsection in Methods). At each step, for
state i with grievance gi,t and neighbor mean mi,t we com-
pute ŷbase

i,t+1 = βselfyi,t + βspatmi,t + γt, then update

gi,t+1 ← gi,t+λ
(
ŷbase
i,t+1−gi,t

)
, λ ∈ (0, 1) (default 0.1).

This maintains empirically estimated persistence and
spillovers while allowing agents’ multi-criteria choices (se-
curity, sovereignty, resources, reputation), bounded rational-
ity, and learning to drive deviations.



Operational Coalition Network and Communities
Because formal alliance data are not embedded in the current
panel, we infer an operational coalition network from co-
activity:

• Org layer: countries active in REGIOORG in the same
year (UNSC removed to avoid global coupling).

• Intervention layer: co-implementation across core
columns (GROUNDFO, AIRFORCE, ENFORCE, HU-
MANAID, MEDIATE6, ACCORD6), expanded via
fuzzy-matched terms (peacekeep/mission/deploy/sanc-
tion/aid/relief/mediat). Family-specific weights empha-
size military>sanctions>PKO>aid>diplomacy>org.

• Conflict penalty: conflict dyads (gwno a/b) downweight
the tie.

Layers are aggregated over a trailing window (default 10
years), normalized to [0, 1], and combined as

wally
ij = clip[0,1]

(
αorg w̃

org
ij + αintv w̃

intv
ij − αconf w̃

conf
ij

)
,

with defaults αorg=0.7, αintv=0.5, αconf=0.3. We retain all
positive ties to avoid over-sparsification. We run weighted
Louvain (python-louvain) on the alliance graph (isolates re-
tained) and report modularity, number/sizes of communities,
and layer-specific partitions (org-only, intv-only) for robust-
ness.

Agent Decision Rules and Interaction Mechanics
Countries are agents with grievance/state gi,t, conflict inten-
sity yi,t, and action vector ai,t (peacekeeping, sanctions, aid,
diplomacy, receptivity). Signals are si,t = (yi,t,mi,t,Φi,t),
where mi,t =

∑
j Wijyj,t and Φi,t aggregates multilayer

network features with learned weights.
Baseline updates combine persistence, diffusion, and year

shocks:

ŷbase
i,t+1 = βselfyi,t + βspatmi,t + γt, (2)

gi,t+1 ← gi,t + λ
(
ŷbase
i,t+1 − gi,t

)
, (3)

with intervention deviations:

∆i,t = g(ui,t; η) = coef⊤ standardize(ui,t), (4)
yi,t+1 = clip (gi,t+1 +∆i,t, support(y)) , (5)

where ui,t are standardized PRIF-like inputs with ridge-
estimated coefficients.

Interactions occur via three topologies: spatial (W ), in-
tervention co-activity, and organizational co-participation.
Agents respond to si,t but are nudged toward empirical reg-
ularities through λ, preventing free drift. Validation checks
reproduce observed distributions, network correlations, and
impulse responses consistent with βself and βspat.

Simulation Protocol and Parameters
Simulations proceed annually, initializing yi,t0 from the last
observed year. Unless noted, λ = 0.1 and Stage 1 parame-
ters are retained. Baseline runs assess drift; shock–response
experiments target top-K at-risk states, apply a shock +δ,
then counter-shocks at empirical percentiles. We record
system-level deltas in grievance, contagion, modularity, and
complexity, averaged over S seeds.

When COW data are missing, W defaults to REGION
adjacency; sensitivity runs replace W with alliance or in-
formation graphs. Code releases include parameter dumps,
adjacency matrices, and manifests (seed, T , K, δ).

Shock–Response Intervention Experiments
At t0 we inject shocks (e.g., +0.2 grievance) to top-K states;
at t0+1 we apply counter-shocks for each intervention fam-
ily. Reported deltas cover grievance, cascades, contagion,
and modularity relative to baseline.

Diffusion Diagnostics in the Simulator
Diagnostics emphasize two checks: (i) the no-spatial coun-
terfactual (βspat=0) and (ii) W sensitivity (REGION vs al-
liance vs information). Residual Moran’s I and γt align-
ment are omitted as they remain constant under REGION
fallback.

Results
Global Conflict Dynamics and Fit
Figure 2 shows the global mean conflict intensity over time.
The model reproduces broad secular variation at the sys-
tem level and provides face-valid temporal dynamics across
the sample period. Cross-sectional patterns are visible in
country-by-year heatmaps of observed and predicted inten-
sity (Figs. 3), while the pointwise fit appears in the ob-
served–predicted scatter (Fig. 4).

Out-of-sample performance at the result level is: RMSE
= 0.200, MAE = 0.098, Bias = 0.018, and R2 = 0.209
(global, N = 2,723). Region-stratified metrics indicate
heterogeneous difficulty across regions (e.g., some regions
show higher RMSE and lower R2), consistent with varying
conflict regimes and data coverage.

At the core of the diffusion mechanism, the learned spatial
parameters are βself ≈ 0.262 and βspat ≈ 0.094 (Fig. 12).
These values imply moderate persistence and a measurable
but smaller contemporaneous neighbor contribution.

Figure 2: Global mean conflict intensity over time.



Figure 3: Observed (left) and predicted (right) conflict intensity,
country-by-year.

Figure 4: Observed vs. predicted intensity (result-level).

Intervention Effects

Intervention effects are learned in a two-way fixed-effects
ridge framework using standardized features (no hard-coded
magnitudes). Figure 5 displays standardized coefficients
with CIs, summarizing average partial associations after
controlling for lagged self and neighbors.

Figure 5: Standardized intervention coefficients with confidence
intervals.

Residual Diagnostics and Calibration

Residual structure and calibration were examined compre-
hensively. Residuals by region (Fig. 6) diagnose geographic
variation in errors; QQ plots (Fig. 6) assess normality;
and residuals vs. neighbor mean (Fig. 6) check for re-
maining spatial-lag misspecification. Grouped reliability
by region and decade (Fig. 7) indicates calibration quality
within strata. Heteroskedasticity bands by predicted decile
(Fig. 10) quantify variance behavior as a function of pre-
dicted level.

Figure 6: Residual diagnostics: by region (left), QQ (center), vs.
neighbor mean (right).

Figure 7: Grouped calibration (reliability): by region (left) and
decade (right).

Spatial Dependence and Diffusion Mechanics

Residual spatial autocorrelation over time is summarized by
Moran’s I (Fig. 8) using REGION-based adjacency (COW
fallback). Rolling-window OLS of βself and βspat (Fig. 8)
visualizes temporal stability. Reconstructed year effects γt
with bootstrap CIs (Fig. 9) capture common shocks net of
self and spatial lags. A cumulative learning curve (Fig. 9)
relates sample length to RMSE. Approximate densities from
reported CIs (Fig. 10) provide an uncertainty view for the
core spatial parameters.

An impulse response experiment (Fig. 11) simulates a
unit shock in a focal country and tracks spillover. Sensi-
tivity to the spatial weights (Fig. 11) recomputes neighbor
means under REGION-based W to check RMSE changes.
With COW contiguity/centroids, this analysis can be refined
to geographic adjacency.

Figure 8: Moran’s I (left), rolling-window coefficients (right)

Figure 9: γt with CIs (left), and learning curve (right).



Figure 10: Approximate density from CIs (left) and heteroskedas-
ticity bands (right).

Figure 11: Impulse response (left) and sensitivity to spatial
weights (right).

Network Structure and Dynamics
Network diagnostics indicate right-skewed (heavy-tailed)
degree distributions with a small subset of comparatively
high-centrality actors in the intervention and organizational
layers; the distributions are not purely scale-free, and con-
centration is moderate rather than extreme. We therefore
describe these as centrality asymmetries rather than strict
hubs, and we report focal time series to show how these
asymmetries shift over years.; Fig. 12. Focal centrality time
series (e.g., for conflict, intervention, and organizational lay-
ers) illustrate shifting structural importance for selected ac-
tors across years ( 13). Layer weights used by the model
are learned via regularized prediction of next-year intensity,
avoiding arbitrary weights.

Figure 12: Network degree distributions (intervention, organiza-
tional) and core spatial betas (right).

Figure 13: Focal actor centrality time series by layer (intervention,
organizational).

Communities and Information Structure
The coalition network yields modularity Q in the 0.03–0.04
range with≈20–24 communities (isolates retained), indicat-

ing nontrivial bloc structure. Layer-specific partitions (org-
only vs intervention-only) are computed to check robustness
(reported in the metrics JSON and available for tabular ex-
port).

Alliances, Trust, and Information Structure

For transparency, we include adjacency heatmaps and de-
gree distributions for alliances, trust, and information links,
and a network plot focusing on the largest connected compo-
nent (labels enabled for readability). These reveal nontrivial
bloc structure (communities), directional information flows,
and the seeded relationship between alliances and trust.

Figure 14: Adjacency heatmaps (left) and degree distributions
(right) for alliances, trust, and information layers.

Figure 15: Grievance dynamics: median-smoothed series (left)
and agent heatmap (right).

Figure 15 overlays agent-level grievance trajectories
(light smoothing) to show dispersion and system-wide shifts



over steps; tight bands indicate synchronization, while di-
verging traces mark heterogeneity. Figure 15 presents the
same series as an agent-by-step heatmap, which makes cas-
cades, plateaus, and cluster-wise persistence visually salient.

Complexity Metrics

We summarize recurrence (RR, DET), DFA/Hurst, spectral
entropy, and select ABM v30 metrics as a table (means
and standard deviations over seeds; single-run values shown
where appropriate). Figure counterparts are provided in the
appendix.

Table 2: Simulation complexity and network metrics.

Metric Value (mean) Spread (sd)

Spectral entropy (mean) 0.507 0.071
Hurst exponent (mean) 1.681 0.168
Recurrence (RR) 0.393 –
Determinism (DET) 0.977 –
Info diffusion index 0.731 –
Modularity Q 0.035 –
Number of communities 24 –
Avg intervention load 1.50 –

Table 3: Selected system metrics (means with 95% CIs) aggre-
gated over multiple seeds.

Metric Mean SD CI95

Contagion (cross-corr proxy) 0.094 0.003 0.002
Alliance density 0.00031 0.00002 0.00001
Info diffusion index 0.736 0.009 0.006
Modularity Q 0.034 0.001 0.001
Communities (count) 23.6 0.8 0.5

Limitations and Robustness

Spatial weights default to REGION adjacency when conti-
guity data are missing, which limits precision; incorporating
borders and centroids would sharpen spillover estimates and
diffusion counterfactuals. Coalition structure, inferred from
co-activity and penalized by conflict dyads, reflects coordi-
nation potential rather than treaties; overlaying treaty and
UN voting data would strengthen validity. Interventions are
modeled as counter-shocks rather than causal effects, and
event–study designs on atrocity–sanction episodes could re-
fine these tests. Community partitions depend on weight-
ing and window choices, so robustness requires sensitiv-
ity checks with normalized mutual information. For repro-
ducibility, adjacency matrices, tabular summaries, and per-
country community assignments should be distributed with
the manuscript.

Discussion
Empirical Findings
The model integrates spatial diffusion with two-way fixed
effects, multilayer network features, and a regularized in-
tervention estimator. It achieves moderate predictive accu-
racy (R2≈0.21) while reproducing global conflict patterns.
Diffusion coefficients show persistence (βself ≈ 0.26) and
smaller neighbor effects (βspat≈0.09), with year effects cap-
turing systemic shocks. Intervention coefficients are modest
and predictive rather than causal, aligning with constrained
real-world pathways.

Diagnostics and Structure
Residual and calibration checks show reasonable fit with
some regional variation and occasional clustered shocks,
suggesting refined adjacency data would improve robust-
ness. Network layers display heavy-tailed degree distribu-
tions and shifting hubs, with coalition blocs highlighting
coordination potential beyond treaties. Sensitivity analyses
confirm results are not overly brittle to neighborhood defi-
nitions, though improved contiguity data remain a priority.
Complexity metrics and decomposition of contributions fur-
ther clarify when outcomes are driven by self-persistence,
neighbor spillovers, or global shocks.

Limitations and Outlook
Key limitations include missing or coarse spatial and in-
tervention data, linearity assumptions, and the endogenous
nature of inferred coalitions. Confidence intervals may
understate dependence, and parameters reused in simula-
tion assume stability that may fail under structural shocks.
Nonetheless, the two-stage design grounds the ABM in em-
pirical regularities while retaining heterogeneity, making it a
predictive diagnostic platform. Future work should expand
data inputs, refine neighborhood logics, and embed adaptive
diagnostics.

Conclusion
We present a two-stage framework linking statistical estima-
tion and agent-based simulation for evaluating intervention
strategies. By reintroducing empirically estimated persis-
tence, spillover, and shock parameters into the ABM, the
model reduces drift and ensures transparency while support-
ing scenario-based experimentation. Its value lies in inte-
grating statistical discipline with simulation flexibility, en-
abling comparative evaluation of intervention portfolios and
exposure of coordination risks. The framework is predictive,
not causal, but provides decision-relevant diagnostics and a
transparent foundation for refinement through enriched data,
adaptive coupling, and expanded network structures.

Future Directions
Future work will extend the framework by refining empir-
ical coupling, coalition networks, intervention portfolios,



diffusion diagnostics, relational layers, complexity metrics,
and contribution decomposition into a more integrated plat-
form. Adaptive coupling should allow parameters to vary
with volatility or regime type, balancing stability and re-
sponsiveness. Coalition networks can be enriched by over-
laying operational blocs with treaties, UN voting, and re-
gional charters, clarifying when cooperation is institutional-
ized versus emergent. Intervention modeling should move
beyond single counter-shocks toward sequential portfolios
and stochastic cascades, better reflecting real-world crisis
management. Diffusion diagnostics require testing multiple
neighborhood logics—geographic, trade, alliance, informa-
tion, and subnational—to capture contagion pathways. Dis-
tinguishing formal alliances from trust and informal ties,
validated with surveys or diplomatic records, will sharpen
understanding of coalition robustness. Complexity measures
such as recurrence, determinism, entropy, and Hurst expo-
nents may serve as early-warning indicators, while decom-
position across self, neighbor, and common shocks should
be extended to subnational and multi-level contexts. To-
gether, these steps move the model toward adaptive scenario
analysis and context-sensitive diagnostics.
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