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Abstract

Generative Agent-Based Modeling (GABM) using
Large Language Models (LLMs) provides new avenues
for studying complex social phenomena. This study
investigates how personality traits and interaction his-
tory affect cooperative behavior and collective dynam-
ics in an LLM-based Social Particle Swarm (SPS)
model, where agents move in a two-dimensional space
and play the prisoner’s dilemma game with their neigh-
bors. We replaced conventional agents in the SPS
framework with LLM agents endowed with diverse Big
Five personality scores and varying memory lengths for
the previous history of games with neighbors. Our ex-
periments revealed that memory length is a critical fac-
tor governing collective behavior. The longer memory
drastically suppressed cooperation, transitioning the
system from stable cooperative clusters to dynamic cy-
cles of cooperation and collapse, and ultimately leading
to a state of scattered defection. Furthermore, agents’
personality traits correlated with their actions; for ex-
ample, high Agreeableness was consistently linked to
more cooperative and less mobile behavior, partially
aligned with findings from experiments with human
participants. We also found that agents without ex-
plicitly assigned personalities sustained higher levels
of cooperation. These results demonstrate that cog-
nitive parameters, such as memory, can qualitatively
alter collective dynamics and highlight the potential of
LLM-based models for exploring the intricate interplay
between psychology and social behavior.

Introduction

Generative Agent-Based Modeling (GABM) using
Large Language Models (LLMs) has offered new av-
enues for understanding complex social phenomena
by simulating agents with human-like reasoning (Park
et_all (2023)), |Chen et al. (2023), Lu et al| (2024)).
A central question is how cooperation emerges and
evolves within these Al agent populations, connecting
vast knowledge from evolutionary game theory (Nowak
(2006)) to the dynamics of these new agents (Sun et al.
(2025)).

The purpose of this study is to understand how in-
dividuality (e.g., persona, personality traits) and in-

teraction histories can affect individual behavior and
collective dynamics in a group of LLM agents. We fo-
cus on the personality traits described in prompts for
their decision-making process. Jiang et al. explored the
ability of Large Language Models (LLMs) to express
personality traits by simulating distinct LLM personas
based on the Big Five personality model, demonstrat-
ing that their self-reported Big Five Inventory scores
were consistent with their assigned personality types
and that their writings exhibited representative linguis-
tic patterns (Jiang et al| (2024)). It is also reported
that such personality descriptions can affect cooper-
ative behavior (Phelps and Russell (2023)) and can
evolve (Suzuki and Arital (2025)) in game-theoretical
situations such as the prisoner’s dilemma.

We also focus on the effects of interaction history
on collective dynamics in LLM agents, as they are ex-
pected to exhibit diverse behaviors stemming from their
personality traits when facing different situations. The
relationship between memory length and cooperative
behavior presents contradictory findings in evolution-
ary models. While some studies suggest longer mem-
ory enhances cooperation through improved recogni-
tion of past behaviors and the stabilization of recip-
rocal strategies (Hauert and Schuster| (1997)); [Li and
Kendall (2014)), recent evidence shows that exces-
sive memory can be detrimental to cooperation due
to reputation-based punishment traps that prevent for-
giveness (Horvath et al.| (2012))) or information quality
trade-offs in learning (Alonso-Sanz| (2009))). [Luo et al.
(2016) demonstrate that intermediate memory lengths
optimally facilitate cooperation on interdependent net-
works, while |Qin et al.| (2008) show context-dependent
effects where memory benefits vary with model param-
eters, suggesting diverse mechanisms underlying the
complex relationship between memory and coopera-
tion.While these studies provide valuable insights, they
predefine how memory is utilized in specific ways. This
may limit an LLM-based agent’s ability to interpret and
act on its experiences in a flexible, context-dependent



manner.

The Social Particle Swarm (SPS) (Nishimoto et al.
(2023)) is a model for studying the emergence and col-
lapse of cooperative groups in social dilemma situations.
The model integrates a physical model of self-driven
particles with game theory, providing a framework to
capture the co-evolution of cooperative behavior and
social relationships (represented as distances between
particles in a 2D space) in continuous space and time.
Agents (particles) play the Prisoner’s Dilemma game
with their neighbors, moving and altering their rela-
tionships by attracting or repelling each other based
on the payoffs received. The previous study revealed
that the population primarily exhibits three charac-
teristic collective states: general defection (Class A),
general cooperation (Class B), and a cyclical dynamic
of cooperation and defection (Class C). The dynamics
observed in Class C, characterized by the formation,
invasion, and collapse of cooperative clusters, are par-
ticularly interesting as they have also been observed
in experiments involving human participants (Suzuki
et all] (2018)), capturing the instability of cooperation
and fluidity of relationships in real societies.

Studies on the SPS model suggested that the diver-
sity of individuality among agents plays a crucial role
in maintaining these collective dynamics, especially the
dynamic Class C. In the original SPS model, individ-
uality is represented as individual differences in a pa-
rameter indicating the propensity to cooperate (i.e., the
cooperation threshold for the proportion of cooperators
in their neighbors) (Nishimoto et al| (2023))). Further-
more, web-based experiments with human participants
using the SPS model framework indicated some corre-
lation between subjects’ personality traits and their co-
operative behavior and relationship-building with oth-
ers within the experiment(Suzuki et al|(2018)). These
findings highlight the importance of individuals’ inter-
nal characteristics and their diversity in understanding
collective dynamics.

To achieve our purpose, we extend the SPS model
by replacing the conventional agents, whose behavior is
described by a simple rule, with LLM agents endowed
with diverse Big Five personality traits, represented as
a set of numeric parameters, and their interaction his-
tories of past game results and payoffs. We then ex-
plore how personality and memory affect the dynamics
of the social groups they form. Specifically, we discuss
the relationship between their personality traits and in-
dividual behavioral tendencies, as well as the effects of
the memory length of an individual’s interaction his-
tory with others on their collective behavior. The ex-
periments revealed that varying memory length in LLM
agents leads to distinct collective behaviors, indicating
that longer memory lengths have adverse effects on co-

operation. Moreover, the observed correlations between
agent personality traits and their actions show partial
consistency with findings in experiments with human
participants.

We also preliminarily consider cases where personal-
ity traits are not explicitly specified, showing that un-
specifying the personality may promote cooperation.

Model

The model is based on the Social Particle Swarm (SPS)
model, with agent decision-making replaced by LLMs.
A population of N agents operates within a 2D toroidal
plane of size W x W, interacting with others within a
radius R.

Agent Behavior

At each time step t, each agent acts according to the
following steps, as illustrated in Figure [l which shows
both the prompt structure (left panel) and the spatial
decision-making context (right panel):

1. Situation Recognition and Decision-Making by LLM

Each agent i’'s LLM is fed a prompt containing
the necessary information for decision-making. This
prompt, which will be explained in detail in the next
section, includes the agent’s current state (position
x;(t), strategy s;(t), cumulative score Score;(t)), its
pre-assigned Big Five personality traits, its recent
interaction history (based on memory length L,,),
and the status of other agents in its neighborhood
N;(t) (strategy s;(t), relative position u;;(t)). Based
on this prompt, the LLM determines the strategy
si(t + 1) to adopt at the next time step ¢ + 1 and
the movement action (i.e., magnitude and direction of
movement), to maximize its score, outputting them
along with its reasoning. The agent moves to a new
position x;(t + 1) according to the determined move-
ment action, with its speed capped at a maximum
value MAX SPEED.

2. Payoff Calculation and Score Update

The instantaneous total score G;(t) at time t is cal-
culated based on the strategy s;(¢) at time ¢ and the
strategies s;(t) of neighboring agents. If the basic
payoff agent ¢ obtains from a Prisoner’s Dilemma
(PD) game with a neighboring agent j € N;(t) is
Gbase(8i(t), sj(t)), considering the decay in their so-
cial closeness according to the distance between them
|u;;(¢)|, the instantaneous total score agent i obtains
at time t is calculated as:

Gbase (si (t) y Sj (t))

Gilt) = T+ Ty (0)]

JEN;(t)




Prompt. Placeholders formatted as "#Placeholder#” are dynamically replaced with specific parameter
values and the agent's current state data for that step.

You are participating in an experimental simulation, acting as an agent in a social particle swarm (SPS) model.
Details of the SPS model experiment:

1. Environment:

- You exist in a 2D space where your position represents your social relationships.

- You can interact only with particles within your interaction radius(#R#).

2. Interaction rules:
- Payoff matrix for each interaction:
* Mutual Cooperation: Both gain +#Payoff_R# points, creating sustainable mutual benefit.
* Mutual Defection: Both lose #Payoff_P# points, resulting in mutual harm.
* Unequal choices:
- If you cooperate but the other agent defects: You lose #Payoff_S# points (being exploited).
- If you defect while the other agent cooperates: You gain +#Payoff_T# points (short-term exploitation).
- Proximity effect: Your payoff is inversely proportional to distance.

3. Decision-making:

In each round, you will make two strategic decisions:

a. Strategy: Choose to Cooperate or Defect. Cooperation builds trust; Defection may yield higher immediate rewards
but risks retaliation.

b. Movement: Determine direction (0-360° ) and magnitude (0-#Max_Speed#).

4. Objective: Maximize your payoff through strategic decisions and movement.

5. Learning from Past Interactions:
- You have memory of past interactions with specific agents.
- Use this historical information to inform your strategy (e.g., assess trustworthiness, identify exploitation risk).

Your Task for the Current Step:
Based on the SPS model description, your personality traits, your memories of past interactions, and the current
context, determine your next action and strategy.

Current Personality Traits:
each trait is represented on a scale from 0 to 1, where 0 indicates a low level of the trait, 0.5 represents the average
level for a typical human, and 1 indicates a high level. {

. 0 1 #P_O#, C ient L #P_C#,
#Personality_Scores_JSON# penness et onsclentousness o

Extraversion : #P_E#, Agreeableness : #P_A#, Neuroticism : #P_N#

i . Agentj:
Current Experimental Context - Stustoey: #Ststony i#
ontext_ - Relative position: Distance=#Dist_i_j#, Angle=#Angle_i_j#
- History (t=#t_i_j_1):

## Required Response Format - You #ST_i_1#, They #ST_j_1#, score: #SC_i_j_1#
Action: [magnitude, direction] - History -
Strategy: Cooperate/Defect Agent k: -

Reasoning: Provide a concise explanation (1-2 sentences) for your decision.
Respond only with the required format. Do not include any additional commentary or questions.

- Strategic considerations: Shart-term exploitation gains may lead to retaliation; your reputation may influence others.

ﬂn example summary of the input context for Agent i at step tZSBZ\
M Your Personality:

Openness : 0.6, Conscientiousness : 0.5, Extraversion : 0.4,
Agreeableness : 0.4, Neuroticism : 0.8
B Current Experimental Context:
Current Step : 362
Current Strategy : Cooperate
Neighbors:
Agent j:
- Strategy: Cooperate
- Relative position: Distance=20, Angle=260"
- History (t=361):
- You Cooperated, They Cooperated, score: +0.05
Agent k:
- Strategy: Defect

- Relative position: Distance=10, Angle=130"
- History (t=361):
- You Cooperated, They Defected. (score: -0.2)

Defector

Neighbors

Cooperator

output

Action:[17, 280° ]
Strategy: Defect
Reasoning: Given my high
neuroticism, I'm anxious
about being exploited. I'll
stay away from Defector
and switch to defection.

Interaction
radius R

Figure 1: Schematic of the LLM agent’s decision-making process. The left panel shows the complete prompt template
provided to the agent, defining its role, the rules, and the structure for its response. The right panel shows a concrete
example for agent i at a specific time step. The top right box presents the specific data given to the agent. The
diagram below visually represents this situation, and the “output” box shows the agent’s final decision.

Here, 1 is added to the denominator to avoid division
by zero when agents completely overlap. This G;(t)
updates agent i’s cumulative score:

Score;(t + 1) = Score;(t) + Gi(t).

Details of the LLM Decision-Making Process

As mentioned earlier, an agent’s strategy selection and
movement are determined by each agent’s LLM in-
stance. The LLM prompt, as shown in Figure [1| (left
panel), is designed to provide comprehensive contex-
tual information for decision-making. Key information
such as personality traits and interaction histories is
structured in JSON format for optimal interpretation.
Specifically, it includes the following main information
categories:

» Basic Game Settings and Objectives: Describes the
rules of the social dilemma, methods for calculat-
ing scores and payoffs, and the basic objectives of
the agent. It is important to note that the objec-
tive “Maximize your cumulative payoff” is open to
interpretation; an agent might prioritize consistent,

safe gains or take risks for higher rewards. Further-
more, how an LLM weighs short-term losses against
long-term gains under this instruction is not prede-
termined and emerges from its internal logic.

Agent’s Own Current Internal State:

— Current strategy s;(t): The strategy the agent is
currently adopting.

— Personality Traits:  Agents are assigned Big
Five ) personality traits: Open-
ness, Conscientiousness, Extraversion, Agreeable-
ness and Neuroticism. Each agent receives numer-
ical scores (0 to 1) for these traits, as exemplified
in the Input Context shown in Figure [1| (top right
panel). To provide context for these numerical
values, the prompt includes an explanatory note:
“Current Personality Traits (each trait is repre-
sented on a scale from 0 to 1, where 0 indicates a
low level of the trait, 0.5 is average, and 1 indicates
a high level):”. This method provides a quantita-
tive and replicable way of assigning personality, in
contrast to purely descriptive, text-based personas.



o Recent Interaction History (Memory):

— Each agent has access to a record of its interactions,
which is managed on a per-opponent basis. For
each unique opponent, the agent’s memory stores
the results of up to the L,, most recent games, as
shown in Figure |1 This opponent-specific history
allows the LLM to evaluate individual relationships
and make nuanced decisions, such as reciprocal or
retaliatory actions. If L,, > 0, this history, pro-
vided as part of the prompt, includes details such
as the opponent’s ID, the strategies adopted by
both agents in those past games, the payoffs agent
i received, and the time of those interactions. For
L,, = 0, no past interaction history is provided to
the LLM.

o Current External Environment (Neighborhood Situ-
ation):

— Information about neighboring agents, including
their current strategy and relative position.

Based on this multifaceted information, the LLM
makes inferences and outputs its next strategy, move-
ment, and reasoning.

Experiment
Experimental Settings

The basic experimental parameters were set as fol-
lows: N=100, W=500, R=50, MAX_SPEED=20,
Prisoner’s Dilemma payoff matrix:T (temptation)=2.0,
R(reward)=1.0, P(punishment)=-1.0, S(sucker’s pay-
off)=-2.0. We conducted 500 steps for each trial.

At the start of the experiment, each agent is assigned
Big Five personality traits. Each trait score was inde-
pendently generated from a normal distribution with
a mean of 0.5 and a standard deviation of 0.16, then
clipped to the range [0, 1]. The LLM prompt for these
agents explicitly listed these personality scores.

To investigate the effects of memory, we varied the
length of the past interaction history that agents could
refer to (memory length L,,): 0, 1, 2, 3. To ensure
statistical reliability, 10 independent experimental trials
were conducted for each setting.

We used Gemini-2.0-flash as the LLM for decision
making. The codes and data, including videos showcas-
ing typical dynamics observed in different experimental
conditions, are available onlineﬂ

Overview of results

This section presents the results from the experiments
with personality traits, covering both collective dynam-
ics and individual-level behavior.

"https://doi.org/10.6084/m9.figshare.29002682

Table 1: Mean and Volatility of the number of neighbors
and cooperation rate for each L,, condition.

Ly, | Number of Neighbors | Cooperation Rate
Mean Volatility Mean | Volatility
0 17.6 6.41 0.899 0.0454
1 3.75 1.80 0.260 0.108
2 2.65 1.38 0.139 0.102
3 2.48 0.387 0.0776 0.0462
500,y Agent Mﬂveme"t'T""Eie . Agent Movement - Time: 122
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Figure 2: Agent configurations for L,, = 0.

Collective Dynamics Table [I] shows two key statis-
tical measures for both cooperation rate and average
neighbor count at each memory length (L,,): the trial-
averaged mean and volatility. The volatility is defined
as the average of standard deviations calculated from
the time-series of each metric within a single trial. From
this table, a clear trend is observed where the aver-
age cooperation rate consistently decreased as memory
length increased. In the absence of memory (L, = 0),
a highly cooperative state was maintained, with a mean
cooperation rate of 0.899. However, the introduction of
even a minimal memory (L,, = 1) caused a dramatic
collapse of cooperation, which fell to 0.260 and contin-
ued to decrease with longer memory lengths. Similarly,
the average number of neighbors also decreased with in-
creasing memory length. Focusing on the volatility, the
value of the cooperation rate was the largest at L,, = 1
when the cooperation rate was small (L, > 1), indicat-
ing significant variability in cooperation and suggesting
the emergence of dynamic social relationships. These
results indicate that the memory length strongly af-
fects cooperative behavior and social proximity among
agents.

Alongside these overall measures, a range of emer-
gent spatial dynamics were noted, contingent on the
memory length L,,. Representative snapshots are pro-
vided in Figures [2to[4dl A general behavioral tendency
observed was that agents, particularly dispersed defec-
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Figure 3: Agent configurations for L,, = 1.

tors, often moved in the same direction. This might be
attributed to an inherent bias in the LLM, causing it
to select a consistent direction when faced with a uni-
form neighborhood situation. In contrast, cooperative
agents tended to form clusters and remain relatively
stationary.

Transition of Cooperation Dynamics with
Varying Memory Length

Figure [5| plots the temporal trajectories of the average
cooperation rate and the average number of neighboring
agents. Each point represents the state of the popula-
tion at each time step of the experiment, and the color
change (from dark purple to yellow) indicates the pas-
sage of time (from initial to final step). The large blue
circle indicates the state at the start of the experiment,
and the red square indicates the state at the end. View-
ing this figure in conjunction with Table [1| allows for a
more detailed understanding of the effect of memory
length on cooperation dynamics.

When L,, = 0 (Figure , the trajectory quickly
evolved to and stabilized in a state with a high cooper-
ation rate and a large number of neighbors. This sug-
gests a dynamic where cooperative clusters form and
grow, leading to clustered cooperation (Class B in the
original SPS model). The high average cooperation rate

Agent Movement - Time: 75 Agent Movement - Time: 199

oY

100 L . 100|

(a) t=75 (b) t=199

Figure 4: Agent configurations for L,, = 2.

and average number of neighbors in Table [1| also sup-
port this. The snapshots shown in Figure 2| confirm
that multiple cooperative clusters were formed as time
progressed from the initial state.

When L,, = 1 (Figure [5b)), the trajectory exhibited
a complex pattern with large fluctuations in both the
average cooperation rate and the average number of
neighbors, circulating over a wide area. This suggests
a dynamic state where the formation and collapse of
cooperative clusters were repeated (similar to Class C),
which is consistent with the large volatility of the co-
operation rate in Table The snapshots in Figure
illustrate a part of this cyclical dynamic, where cooper-
ative clusters formed and subsequently collapsed.

When L,, = 2 (Figure and L,, = 3 (Figure [5d)),
the trajectory tended to converge relatively quickly to
a state with a low cooperation rate and a small number
of neighbors. Particularly at L,, = 3, this convergence
was very rapid, resulting in almost the entire population
being in a state of defection (similar to Class A). This
suggests that the memory of past negative experiences
fosters risk-averse behavior, inhibiting the formation of
cooperation and leading to the isolation of agents. The
marked decrease in the average cooperation rate and
the average number of neighbors with increasing mem-
ory length, as shown in Table [1} quantitatively demon-
strates this trend. In Figure [d] some cooperation ini-
tially existed, but as time passed, only isolated agents
who adopted defection strategies remained.

These results clearly demonstrate that a single cog-
nitive parameter, the agent’s memory length, can qual-
itatively and significantly alter the overall cooperation
dynamics of the system, giving rise to diverse patterns
similar to the collective states observed in the original
SPS model (Classes A, B, and C). This strongly sug-
gests that the cognitive abilities of LLM agents, partic-
ularly memory, can trigger transitions in collective-level
patterns.
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Figure 5: Temporal trajectory plots of the average cooperation rate and average number of neighboring agents for
all agents under each memory length (L,,) condition. Each point represents the state of the population at each time
step of the experiment, and the color of the trajectory indicates the passage of time. The blue circle indicates the
starting point, and the red square indicates the ending point.

Effects of Personality Traits on Individual Behavior
To explore how pre-assigned Big Five personality traits
influence agent behavior, we analyzed correlations be-
tween each agent’s personality trait scores and several
key behavioral metrics, averaged over the entire exper-
iment period for each agent in each trial. The primary
behavioral metrics examined, corresponding to the rows
in Figure [6] were:

— Average Cooperation Rate: The proportion of time
steps an agent chose to cooperate.

— Average Neighbors Count: The average number of
other agents within an agent’s interaction radius.

— Average Movement Distance: The average distance
an agent moved per time step.

— Strategy Switch Count: The total number of strat-

egy changes during the experiment.
— Final Score: The cumulative score an agent
achieved by the end of the experiment.

To quantify the consistency of these correlations
across multiple trials, we defined a “Correlation Con-
sistency Score”. For each experimental trial, we cal-
culated the Pearson correlation coefficient between the
scores of a specific personality trait and a specific be-
havioral metric across all N agents. If this correlation,
calculated for a single trial, is statistically significant
(p < 0.05) and positive, it contributes +1 to the score.
If it is significant and negative, it contributes -1. Non-
significant correlations contributed 0. The Correlation
Consistency Score, as depicted in Figure[f] is the sum of
these values over all 10 independent trials for each trait-
behavior pair. Thus, a score closer to 410 indicates
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Figure 6: Correlation Consistency Scores between Big
Five personality traits and agent behavioral character-
istics under long memory (L,, = 3) conditions. Scores
range from -10 to +10.

a consistent positive correlation across trials, while a
score closer to -10 indicates a consistent negative corre-
lation. Scores near 0 suggest no consistent correlation
or conflicting correlations across trials.

We compare the LLM agents’ behaviors with findings
from experiments with human participants. For exam-
ple, the study by [Suzuki et al| (2018) involved human
participants simultaneously operating agents via a web
interface within the SPS model framework, aiming to
maximize their cumulative payoffs. In alignment with
this, agreeable agents in our model tended to be co-
operative and less mobile, consistent with cooperative
human players observed to form clusters and exhibit
less movement in |Suzuki et al| (2018). Similarly, the
increased mobility of extraverted agents in our model
showed parallels with explorative behaviors sometimes
associated with human extraversion. These consisten-
cies suggest a degree of validity in representation of the
personality traits in our model.

LLM agents exhibited behavioral biases correspond-
ing to their assigned personality traits, with these ex-
pressions interacting with cognitive factors like memory.
The partial consistency of these behaviors with find-
ings from experiments with human participants sup-
ports the utility of our framework for studying psycho-
logical traits in social phenomena.

Experiments without Personality Assignment

To understand the effect of imposing explicit person-
ality traits, we conducted an additional set of experi-
ments under the same conditions, with one exception:
the “Personality Traits” section was omitted from the
agents’ prompts. In this “Unspecified Personality” con-
dition, the LLM was not instructed to adopt any specific
personality traits.

Table 2: Mean and Volatility of the number of neigh-
bors and cooperation rate for each L,, condition with-
out Personality Assignment. Volatility, a measure of
system stability, is the average of standard deviations
calculated from the time-series of each metric within a
single trial.

L,, | Number of Neighbors | Cooperation Rate
Mean volatility Mean | volatility
0 15.8 8.27 0.962 0.0292
1 7.12 1.24 0.834 0.0717
2 7.58 1.46 0.750 0.0821
3 7.12 0.996 0.509 0.0963

The results, summarized in Table[2] show a clear de-
pendence on memory length, yet with significant dif-
ferences from the main experiment. As illustrated in
Figure [7] for L,, = 0, the system rapidly evolved into
a highly cooperative state (Class B-like). For interme-
diate memory lengths (L,, = 1 and L,, = 2), the sys-
tem entered a sustained dynamic phase with robust cy-
cles of cooperation and defection (Class C-like). A key
finding emerged when comparing these results to those
from agents with specified personalities. While cooper-
ation declined with longer memory in both scenarios,
the collapse was far less severe here. For instance, at
L., = 1, these agents maintained a high cooperation
rate of 0.834, in stark contrast to the 0.260 observed in
agents with specified traits.

Furthermore, even as memory length increased to
L,, = 3, the system did not collapse into a stable,
static state of defection (Class A). Instead, it main-
tained its cyclical dynamics. This reveals a notable con-
trast: while assigning explicit personality traits tended
to push the system toward stable outcomes, leaving
them unspecified allowed for more dynamic behavior to
persist. This tendency for neutral agents to foster co-
operation is consistent with findings from the original
SPS model, where uniform agents readily form cooper-
ative clusters. However, in our model, where memory
introduces a strong bias toward defection, this behav-
ioral flexibility appears crucial for enabling the recur-
rent emergence of cooperation.

Discussion and Conclusion

We investigated how individuality and interaction his-
tories can affect individual behavior and collective dy-
namics in an LLM-based SPS model, where LLM agents
interact collectively according to their Big Five person-
ality traits parameters and interaction histories.

We found that the longer memory for interaction his-
tories suppressed cooperation more strongly, while the
relationship between memory length and cooperative
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Figure 7: Temporal trajectory plots of average coopera-
tion rate vs. average neighbor count for the Unspecified
Personality condition, color-coded by memory length
(Ly). The circle indicates the starting point, and the
square indicates the ending point.

behavior presents contradictory findings in previous
studies, as discussed in Introduction. The LLM agents
exhibited highly cooperative behavior when there was
no memory. This might be due to LLM’s inherent cog-
nitive biases, which are pre-trained on vast amounts of
human text, causing them to adopt a heuristic of gen-
erous behavior (Fontana et al.| (2024)).

On the contrary, they behaved more selfishly when
allowed to refer to longer memories. This may be due
to the emergence of a risk-averse behavioral tendency,
where agents learn to be distrusted after experiencing
and accumulating adverse outcomes, which might be re-
lated to punishment traps. It should also be noted that
they occasionally formed cooperative clusters more fre-
quently when the memory size was smaller (but not
zero). This suggests that the memory mechanism may
balance between the generous and risk-averse behav-
ior of LLM agents, a key factor in the emergence of
their dynamic social relationships. It is interesting to
note that such roles of memory mechanisms emerged
from these game-theoretical situations, which is differ-
ent from conventional models where the relationship
between the behavior and the memory is directly de-
termined a priori.

We also found that Big Five personality traits of
LLM agents correlated with specific behavioral tenden-
cies even in a dynamic spatial environment involving

movement and cooperative emergence. Agents with
high agreeableness consistently exhibited more cooper-
ative, clustering, and less mobile behavior across dif-
ferent memory conditions. The observed correlations
between personality traits and behaviors showed par-
tial consistency with findings from human participant
studies, suggesting a degree of ecological validity for
LLM-based personality modeling even in dynamic spa-
tial contexts. This demonstrates that personality ef-
fects can emerge and persist in LLM agents beyond
simple pairwise or network-based interactions.

In addition, the experiments without personality as-
signments showed that the population tended to be-
come more cooperative without personality assignments
than with personality assignments. This aligns with
the findings observed in the original SPS model (Nishi-
moto et al] (2023)), which indicate that the popula-
tion tends to converge to a cooperative cluster when
there is no variation in individuality (i.e., the coopera-
tion threshold (0.5) for the proportion of cooperators in
their neighbors). This suggests that a neutral or flexible
behavioral tendency may contribute to the spontaneous
formation of cooperative relationships, even under con-
ditions where defectors tend to dominate the popula-
tion.

Future work will involve analyzing the reasoning
texts generated by the LLM agents to clarify whether
and how past experiences can contribute to dynamic
changes in the behavioral tendency of agents (i.e., dy-
namic or cultural personality) on a short timescale and
affect their collective behavior. Additionally, it is im-
portant to investigate the generalizability of these find-
ings across different large language models.
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