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Abstract

The rapid development in machine intelligence, fuelled by
increased data processing capabilities, advanced algorithms,
and pervasive adoption, has opened new avenues for
exploring the interaction between humans and machines as
a social system. In this paper, we propose a mean-field
game-based model to analyse large-scale interaction between
humans and distributed AI-enabled machines. This paper
is preliminary work in studying Human–Machine Social
Systems (HMSS).

Introduction
Humans interact and obtain information from machines
equipped with algorithms in daily activities, such as
browsing the web, using ChatGPT, driving, trading stocks,
etc. Not only has the interaction of humans and AI-
enabled machines become more frequent, but also the
interactions among increasingly-autonomous machines have
increased, forming a Human–Machine Social System
(HMSS) (Tsvetkova et al., 2024).

While there are extensive studies regarding one-to-one
Human–AI systems (Walton et al., 2022), small groups
of humans interacting with one AI (Leite et al., 2015),
one human interacting with distributed AI systems (Kolling
et al., 2016), or groups of humans and machines (Hollan
et al., 2000) the reality is that we are moving towards
massively-interconnected systems where many human and
AI agents influence each other. It is crucial to investigate the
unique interaction and collective decision-making processes
of humans and machines at a large scale. For humans
and machines to achieve a common goal, information flow
will lead to bidirectional influence between humans and
machines. For example, humans can feed new data to
machines to alter their actions, which pushes the overall
HMSS towards intelligence alignment; Machines can
influence each other through direct or indirect interaction,
similar to how persuasion and cultural evolution occur in
humans. Thorough analysis and modelling are required
to mitigate the negative impact of false manipulation and
promote the tendency of intelligence alignment.

While models based on individual agent interactions
are tractable for studying smaller-scale problems, when
we consider entire societies an approach to agent-based
modelling based on mean-field game theory (Lasry and
Lions, 2007) becomes a better option. This approach allows
us to ask questions about macroscopic behaviour of societies
in a manner that is still computationally tractable, with an
aim of aligning the results with smaller-scale models later.

Considering the increasing number of machines and the
pervasive interaction, this research will adopt the mean-
field game approach to analyze the collective decision-
making processes. Ultimately, it will help us understand
the conditions to achieve the best outcome of collective
intelligence of humans and machines.

To capture the dynamics between humans and machines,
we propose four key factors in the decision-making
processes of both humans and machines: 1) information
accumulation, 2) algorithm advancement, 3) hardware
advancement, 4) interconnectivity. In this extended abstract,
we assume the machines are autonomous artificial agents
that interact with humans in the same social space. Humans
use satisfaction as feedback to machines—greater satisfac-
tion leads to more information exchange with machines.
At the same time, machines are interconnected, which
enables them to share information with peer machines. In
the proposed HMSS, we study how humans’ satisfaction
as feedback to machines influences machines’ cooperation
dynamics and machine intelligence maturity.

Notation Description
Satisfaction state of human s ∈ [0, 0.5]

A set of machines i ∈ M
Intelligence maturity state mi ∈ [0, 1]

Mean-field term of intelligence maturity θm ∈ N (0.25, 0.2)
Machine cooperation action ci ∈ [0, 1]

Weights of machine cost function ω1, ω2, ω3

Weights of satisfaction dynamics β1, β2, β3

Table 1: Notations and descriptions for the equations on the
following page.



Modelling
To study the impact of human satisfaction on machines, we
model machine i’s cost considering the cooperation with
humans, the communication cost with peer machines, and
reward of obtaining feedback from humans. We first define
humans’ satisfaction with the interaction as s. Machine i’s
cooperation is defined as ci. The intelligence maturity of
machine i is denoted as mi. Please refer to Table 1 for
the key notations and description. Machine i’s cooperation
cost is captured by the quadratic form of action ci to
ensure diminishing returns (Hu-Bolz et al., 2023). The
communication cost with peer machines is defined as the
product of mi and the average maturity of i’s peers, θm.
Finally, the reward is obtained through humans’ satisfaction
with ci. Hence, the cost of machine i is

Li(ci, s, θm) = ω1ci
2 + ω2θmmj − ω3cis (1)

where ω1, ω2, and ω3 are positive weights. As the
interconnectivity among humans and machines in HMSS,
the interactions can affect the machine i’s intelligence
maturity. Hence, mi evolves dynamically according to the
average intelligence maturity θm, current machine maturity
mi, and humans’ satisfaction s, which is defined as a Partial
Differential Equation (PDE)

dmi = (β1θm −mi + β2ci + β3s)dt+ σdW (t) (2)

where β1, β2, and β3 are positive weights. We
capture the randomness using Brownian motion, where
σ is the diffusion constant and W (t) a standard Wiener
process (Lasry and Lions, 2007). Machine i aims to
minimise the expected cost by adjusting its cooperation. We
can then propose the optimisation problem of machine i

min
ci

Ji =

∫ T

0

∫
M
[Li(ci, s, θm)θm]dt (3a)

s.t.

dmi = (β1θm −mi + β2ci + β3s)dt+ σdW (t) (3b)

We reformulate the proposed problem in Eq. 3 using the
Hamilton–Jacobi–Bellman equation and Fokker–Planck–
Kolmogorov equation and then solve it by adopting the finite
difference method from our previous work (Hu-Bolz et al.,
2023).

Simulation
We evaluate the impact of humans’ satisfaction on the
mean intelligence maturity and collective cooperation
of machines. Fig. 1 demonstrates that the evolution
of mean intelligence maturity with respect to various
satisfaction: with the increasing satisfaction, not only the
mean intelligence maturity increases, but also the mean
intelligence maturity increasing rate is greater.
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Figure 1: The evolution of mean intelligence maturity with
respect to various satisfaction
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Figure 2: The evolution of collective cooperation with
respect to various satisfaction

Additionally, we study the collective cooperation of
machines, defined as the product of cooperation and its
probability. In Fig. 2, when the satisfaction is below
0.25, the collective cooperation is positive, which guarantees
positive cooperation with humans; While the satisfaction
is greater than 0.25, it increases negatively, which can be
viewed as disruptive (noncooperative) machine behaviour.

Conclusion
The proposed work adopts a mean-field game to model
machines’ cooperation with humans considering humans’
satisfaction. We observe that high satisfaction levels could
promote machine intelligence maturity, potentially lead to
disruption. In future studies, we will analyse the cost
incurred by humans interacting with intelligent machines,
modeling this as a leader–follower game. Our focus will be
on examining human cooperative behavior with machines,
ranging from daily use to no interaction, and the associated
satisfaction states within this dynamic.
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