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Introduction
In the field of multi-agent systems (MAS), a well
known challenge faced by practitioners is the exploration-
exploitation dilemma. This dilemma arises from the fact that
the process of gathering information (i.e., exploration) and
its usage (i.e., exploitation) tend to be two mutually exclu-
sive activities. In the scenario of collective learning, where
a system is tasked with learning the true state of its environ-
ment, a strongly exploration-biased system would take ex-
cessive amounts of time to come to a final consensus about
its environment. Conversely, a strongly exploitation-biased
one may wrongly characterize its environment, especially
when the agents have to contend with noise (Raoufi et al.,
2021). One method to alter the exploration-exploitation bal-
ance of a system is through changing an agent’s level of
connectivity (i.e., changing the number of neighbors with
which an agent communicates directly) (Kwa et al., 2022).
Indeed, it has been shown in several scenarios that there ex-
ists an optimal level of connectivity to maximize a system’s
performance (Mateo et al., 2019; Kwa et al., 2020, 2021).
The work presented here expands on the research previously
done by Crosscombe and Lawry (2021) on a decentralized
MAS carrying out a collective learning task and further ex-
plores the role that agent connectivity plays in regulating a
system’s transition from exploration to exploitation during
such a task.

Method
In Crosscombe and Lawry (2021), the authors describe
an environment using a set of n propositional variables
P = {p1, . . . , pn}, where pi ∈ [0, 1], with 0 and 1 repre-
senting the false and true states respectively. Each agent as-
signs a truth value to each of these variables based on its be-
lief, given as b : P → {0, 1

2 , 1}
n, where 1

2 signifies that the
agent is uncertain of the state of the associated propositional
variable. The overall belief of an agent, i, can therefore be
represented by the n-tuple, ⟨Bi(p1), . . . , Bi(pn)⟩. To facil-
itate collective learning, the agents are connected to each
other using a static topological k-nearest neighbor network.
This is essentially a small-world network with the rewiring

probability, ρ, set to zero (Watts and Strogatz, 1998). At
each time-step, a single random agent pair would be cho-
sen to fuse their beliefs according to the fusion operator first
proposed by Crosscombe and Lawry (2017):

Bi ⊙Bj = ⟨B(p1)⊙B(p2), . . . , B(pn)⊙B(pn)⟩, (1)

where both agents i and j would adopt the belief Bi ⊙ Bj .
At each time-step, all agent are allowed to sample from the
environment. To do so, the agent picks a random proposition
about which it is uncertain (i.e., such that B(pi) =

1
2 ) to in-

vestigate. Upon choosing which proposition to investigate,
the environment yields evidence to the agent with a proba-
bility r and does not yield any evidence with a probability
1− r, where r is known as the evidence ratio. The evidence
takes the form of an assertion, E = ⟨ 12 , . . . , S

∗(pi), . . . ,
1
2 ⟩,

where S∗ : P → {0, 1}n is the true state of the environment.
The agent then updates its belief set using the same operator
described in Eq. 1. As the sampling process is affected by
noise, the evidence yielded is determined as follows:

E(pi) =

{
S∗(pi) : with probability 1− ϵ,

1− S∗(pi) : with probability ϵ.
(2)

For further details regarding the information sampling and
fusion process, the reader is directed to Crosscombe and
Lawry (2017, 2021).

To measure the accuracy of a system, the average error is
calculated at the end of each run by finding the mean Ham-
ming distance between the agents’ beliefs and the ground
truth. In addition, to measure the level of exploration of
the MAS, the number of unique beliefs sets maintained by
the system are tracked across the duration of the simula-
tion, with higher number of belief sets signifying a greater
amount of exploratory activity.

In the simulations performed, 100 agents are used to char-
acterize an environment consisting of n = 1, 000 proposi-
tions. For each set of parameters, 50 trials were carried out
to obtain the average result. These trials lasted for a maxi-
mum of 10, 000 iterations or until the system had converged
on a consensus belief.
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Figure 1: Average error of a 100 agent system characterizing
a n = 1, 000 proposition environment with noise levels of
ϵ = 0.4 (top) and ϵ = 0.2 (bottom). This was measured at
the end of each simulation run and averaged over 50 runs.

Fig. 1 illustrates an optimum level of connectivity, k, that
minimizes the average error of the agents’ beliefs and is
present at different noise levels. Similar to the findings of
Crosscombe and Lawry (2021), this only occurs when the
evidence rate, r, is sufficiently high (i.e., for r > 0.01). The
figure also shows that this optimum decreases with increas-
ing evidence rates as well as with decreasing noise levels.

These findings can be explained through the analysis of
Fig. 2; when both r and k are high, after the system’s initial
exploration, it converges very quickly to a consensus. This
is characterized by a high initial number of belief sets main-
tained by the system followed by a sharp decrease that sig-
nifies a rapid switch from exploration to exploitation. How-
ever, in the presence of environmental noise, the system ul-
timately converges on a single belief set with a high level
of error when compared to the ground truth (i.e., the system
has exploited a poor source of information). High average
errors are also observed in low k systems. Unlike the high
k cases, these errors stem from the system maintaining el-
evated levels of exploration throughout the simulation. As
such, the exploration-exploitation transition does not occur
and the system is unable to converge on a consensus within
the time limit. This high number of belief sets maintained
by the system at the end of each simulation run is what leads
to a high level of average error. In contrast, when the sys-
tem operates at the optimal level of connectivity, it is able
to maintain a high number of belief sets, and thereby ex-
ploration, for a sufficient period of time and converges on a
consensus just before the maximum allowable time elapses.

At low evidence rates, the system gathers less information
from the environment. This reduces the effectiveness of the
exploration process, but also allows the agents to keep their
individual belief sets constant for longer periods of time,
thus facilitating the consolidation of these sets. This reduc-
tion in the number of belief sets present in the system sug-
gests that a small amount of exploitation is being performed
by the MAS. However, due to the scarcity of information

and the presence of noise, systems using low levels of con-
nectivity are unable to fully transition from exploration to
exploitation within the allocated time. This is evidenced by
Fig. 2 that shows systems using k = 10 and k = 20 net-
works are unable to converge on a consensus, thereby lead-
ing to high levels of error. The figure also shows that while
systems using high values of k are ultimately able to settle
on a consensus, they are still unable to gather enough accu-
rate information and therefore converge on a single shared
belief that does not accurately reflect the ground truth.
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Figure 2: Number of belief sets maintained at time t for
various levels of connectivity, k, during a single simulation
run. Simulations were run with a noise level of ϵ = 0.4 and
evidence rates of r = 0.1 (top) and r = 0.01 (bottom).

Discussion
In this work, we have shown how an MAS network’s con-
nectivity degree can be used to regulate the exploration-
exploitation transition in a decentralized learning task. The
speed of this transition impacts the overall performance of
a swarm; while using a high level of connectivity quickens
this transition and reduces convergence time at the cost of re-
duced system accuracy, low levels of connectivity prolongs
the convergence time but results in a more accurate charac-
terization of the environment. The trade-off between con-
vergence speed and accurate environment characterization
leads to the presence of an optimum level of connectivity
that minimizes the consensus error. Such optima are also
found in other systems such as target tracking and leader-
follower MAS. A limitation of this work is that agent move-
ment and imperfect communications are not considered;
agents ‘teleport’ around the environment to sample different
propositions while the communications network remained
constant. In addition, only one agent pair is selected for be-
lief fusion at each time-step; the system still retains some
centralization. Future work should include the modelling
of agent movement and the study of environment sampling
rates to prevent the spatial correlation of beliefs. Methods
using dynamic communications networks that permit indi-
vidual agents to decide when fuse beliefs should also be de-
veloped. These studies would allow the findings to be better
implemented in truly decentralized robotic systems.
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