
Decentralized scheduling through an adaptive, trading-based multi-agent system

Michael Kölle1, Lennart Rietdorf1 and Kyrill Schmid1

1LMU Munich, Germany
{michael.koelle, kyrill.schmid}@ifi.lmu.de, len.rietdorf@campus.lmu.de

Abstract

In multi-agent reinforcement learning systems, the actions of
one agent can have a negative impact on the rewards of other
agents. One way to combat this problem is to let agents trade
their rewards amongst each other. Motivated by this, this
work applies a trading approach to a simulated scheduling
environment, where the agents are responsible for the assign-
ment of incoming jobs to compute cores. In this environ-
ment, reinforcement learning agents learn to trade success-
fully. The agents can trade the usage right of computational
cores to process high-priority, high-reward jobs faster than
low-priority, low-reward jobs. However, due to combinato-
rial effects, the action and observation spaces of a simple re-
inforcement learning agent in this environment scale expo-
nentially with key parameters of the problem size. However,
the exponential scaling behavior can be transformed into a
linear one if the agent is split into several independent sub-
units. We further improve this distributed architecture using
agent-internal parameter sharing. Moreover, it can be ex-
tended to set the exchange prices autonomously. We show
that in our scheduling environment, the advantages of a dis-
tributed agent architecture clearly outweigh more aggregated
approaches. We demonstrate that the distributed agent archi-
tecture becomes even more performant using agent-internal
parameter sharing. Finally, we investigate how two differ-
ent reward functions affect autonomous pricing and the cor-
responding scheduling.

Introduction
In the field of cooperative AI, we seek methods to es-
tablish cooperative behavior amongst independent and au-
tonomous agents (Dafoe et al., 2020). Many situations, like
autonomous driving, require autonomous agents working to-
gether, which makes the ability to act cooperatively a key
part in integrating artificial intelligence into our daily lifes.
Research in reinforcement learning (RL) has shown success-
ful applications for single agent (Mnih et al., 2015; Silver
et al., 2017) and multi-agent systems (Leibo et al., 2017;
Phan et al., 2018; Vinyals et al., 2019). While fully co-
operative tasks, where all agents receive the same reward
and pursue the same goal, can be solved by a centralized
training approach, this is not the case if agents have in-
dependent rewards and goals. Furthermore, the behavior

of purely self-interested agents in multi-agent systems with
common, shared resources often results in sequential social
dilemmas which expose tension between individual and col-
lective rationality (Rapoport, 1974), especially when the re-
sources are scarce (Leibo et al., 2017). Exploration in this
field has led to various approaches on how to influence the
self-interested actions of independent, decentralized training
agents towards a higher, emergent common good. The ap-
proaches range from game theory (Lerer and Peysakhovich,
2018), modeling of social preferences (Busoniu et al., 2010),
to ones where agents incentivise each other to cooperate
(Yang et al., 2020; Schmid et al., 2018; Lupu and Precup,
2020; Schmid et al., 2021).

In this work, we build upon the action market approach
in Schmid et al. (2018, 2021), specifically we introduce a
step between making and accepting an offer. This allows
agents to observe the offers first and then make a decision
about those offers whereas in Schmid et al. (2018) the agents
had to guess the demand based on past transitions. Be-
cause of this extra step, the emergent cooperation tends to
be more stable than in Schmid et al. (2018). We introduce
a multi-agent scheduling environment where mutual bene-
fits can be realized by trading with each other. In this envi-
ronment highly multi-dimensional actions are necessary to
trade and allocate jobs on compute cores. Using neural net-
works (NNs) as the decision making entities, an important
problem emerges: Each multi-dimensional action has to be
translated into one of exponentially many one-dimensional
actions. This renders decision making exponentially dif-
ficult with a linearly increasing number of compute cores
and queue lengths. Therefore, we evaluate different agent
architectures that are designed to address or even circum-
vent the problem of exponential action spaces. Thus, we an-
swer the question which agent architecture is most success-
ful in mastering the highly multi-dimensional action space
of the trading-based scheduling environment. Additionally,
we evaluate the implications if one of these agent architec-
tures is enabled to set trading prices freely on its own. All
code and parameters of the experiments can be found here1.

1https://github.com/lr40/marl-scheduling.git

https://github.com/lr40/marl-scheduling.git


Related Work
In this work, the approach to coordinate the multiple agents
is related to the Action Market introduced in Schmid et al.
(2018, 2021). Yet there is an important difference in the
time dimension: While the market mechanism in Schmid
et al. (2018) is based on a simultaneous matching of supply
and demand, the market mechanism of this work always has
a time step between the making of an offer and its accep-
tance. Agents observe first and then decide which ones to
accept and which ones not to accept. The ”guessing” of a
demand, learned by past rewards as in Schmid et al. (2018),
which then leads to behavioral changes, does not exist here.
Rather an explicit offer, which will be observed, has to be ac-
cepted to conclude the trade. This circumvents the problem
that agents in Schmid et al. (2018) learn over time to take
advantage of the cooperative behavior of the counter party:
They do so by suddenly stopping the costly demand action
- even though demand is still present. The deceived agent
then delivers the desired action - expecting the traded reward
- without receiving the reward. Learned cooperation can be
unlearned by such breaches of trust. On the other hand, the
approach presented in this paper is closer to a direct, explicit
communication of the agents. Thus, it is accompanied by an
increased overhead.

Approach
Scheduling environment
Scheduling comes into play when the demand for resources
is higher than the available processing capacity (Tanenbaum,
2009). In this context we use scheduling for the assignment
of computational jobs to computational cores. A computa-
tional job i can be described by its arrival time tAT

i , burst
time tBT

i and priority pi. The burst time is the duration it
takes for the job to be executed. This time cannot be influ-
enced by the scheduler. After the jobs have completed we
measure the turnaround time tTAT

i (Eq. 1) for each job. The
turnaround time is the total duration that the job remained in
the system. In addition to the burst time, it also includes the
waiting time tWT

i during which the job waited inactively for
its allocation to a core.

tTAT
i = tBT

i + tWT
i tNTAT

i =
tTAT
i

tBT
i

(1)

In order to evaluate a scheduling method, we use the
burst time and turnaround time to measure the normalized
turnaround time tNTAT

i (Eq. 1) of a computational job. The
scheduling process controls the waiting time. The closer the
normalized turnaround time approaches its optimal value 1,
the smaller the included waiting time has been.

We implemented a scheduling environment for multiple
RL agents. In this environment a common resource - M
computing cores - ought to be used efficiently by N agents,
each with K job slots. The agents want to compute renewing

jobs from the slots on the cores. Jobs are of a certain type
whose combination of priority value, length in timesteps and
spawn probability are specified as an environment parame-
ter. The trading mechanism allows the agents to enhance
the individual rewards as well as the overall scheduling per-
formance. In contrast to traditional, centralized scheduling
concepts, the scheduling of this work is partially decentral-
ized. The agents have the chance to exchange access to
compute cores amongst each other if the current owner (i.e.
user) of a core accepts an explicit, observed offer directed
at this core. This offer is a 2-tuple consisting of the reward
payment and the necessary timesteps until payment. In sce-
narios with fixed prices, the reward payments are given as
an environment parameter corresponding to the job type’s
priority. In scenarios with free prices, the reward payment
can be chosen by the offering agent. No scheduling strat-
egy is predefined; the scheduling results from the learned
actions of the agents. An exception to this is the hard coded
auctioneer, which manages currently idle cores (agents lose
ownership of idle cores by design) and grants access to the
highest bidding RL agent. The pure behavior of the auction-
eer - without any intra-agent trading - implements a variant
of first-come-first-serve (FCFS) where jobs with higher pri-
ority values are preferred. Figure 1 gives an overview of the
scheduling environment and the RL loop that the environ-
ment implements.

Rewards
In the scheduling environment, the rewarding scheme for the
individual agents follows an egoistic principle. This is plau-
sible in the context of independent learners that want to get
their jobs computed or want to receive traded rewards.

Reward for terminating jobs and trading access The re-
sponsible owner of a core - i.e. the agent currently running
a job on it - gets a reward as soon as its own job has termi-
nated. This reward has the same value as the priority of the
job. The owner of a core can receive a reward in yet another
way: through a trade. If offers are accepted, the promised
reward payments are first stored by the environment in a
chronological order with respect to a core as long as no job
has terminated yet. When a job terminates all stored reward
claims and liabilities of the preceding trades are settled and
each participant in the reward chain receives its net payout.
These reward chains initially start with the auctioneer as the
owner of all cores and bring no additional net rewards into
the system when a job terminates. They are only a redistri-
bution of the generated reward.

Reward for making offers For offering, on the other
hand, the rewards are received directly in the next time step
if the offer has been successfully accepted by the counter-
party. The generated reward is equal to the priority of the
mediated job.



Figure 1: The general structure of the RL environment.
Agents own cores when they are currently computing on
them. If no compute job is currently running on a core, the
auctioneer owns it. Agents make offers to the owner of a
core to let a job compute on that core if the offer is accepted.

Price setter reward In free price scenarios, the agents will
be enabled to freely set prices for their offers. The reward-
ing scheme of the price setting action can be motivated by
a commercial and a non-commercial motive. In the former
case the agent wants to bid an amount as small as possible
that is just on the brink of being accepted. Mainly, the paid
out reward is the difference between the priority of the fa-
cilitated job pi and the chosen price x which can also be
negative if the price is set too high (Eq. 2).

R1(pi, x) =

{
pi − x if pi ̸= x

0.5 otherwise
(2)

In the non-commercial case, the reward equals the priority
of the the facilitated job pi as long as the set price x was not
higher than the job priority (Eq. 3). In this case the price
setter can increase the bids for free as long as it does not
overshoot.

R2(pi, x) =

{
pi if pi ≥ x

pi − x otherwise
(3)

Agent architectures
Multi-agent systems consist of multiple agents that share a
common environment. An agent is an autonomous entity
with two main capabilities: observing and acting. The ob-
servation of the current state of the environment allows the
agent to choose an appropriate action out of a given action
set. The chosen action depends on an agent’s policy. In
this work, we used different RL agent architectures based on
the PPO algorithm (Schulman et al., 2017) to learn a good
policy for the proposed environment. All NNs used in this
work contain one hidden layer of neurons. An important
constraint to consider in this regard is that RL algorithms
usually allow one NN to output only one one-dimensional
(1D) action at a time. A multi-dimensional action consisting
of d sub actions is only attainable if the environment trans-
lates the chosen 1D-action a back into one of the O(2d) d-
dimensional actions. In this manner, the resulting amount
of actions grows exponentially as the dimensionality of the
multi-dimensional action increases with the problem size or
scaled setup of the environment.

Fully aggregated agent Disregarding this important con-
straint, one can naively construct an agent composed of only
one neural net that has one hidden layer of 64 neurons. The
action of this single neural net is responsible for accepting
or declining offers for up to M cores (if this agent owns all
the cores), and making up to K offers for all of its associ-
ated K job slots at the same time. A single offer is made by
choosing a target core for a job of an own slot. The prices
are predefined per job type as an environment parameter.
The dimensionality of this aggregated action vector sums
up to overwhelming M +K which translates to O(2M+K)
many actions. The agent type implementing this design will
henceforth be called fully aggregated agent.

Semi-aggregated agent The first step to reduce the expo-
nential scaling behavior of the action space is to split the
agent up in two neural networks (each with a hidden layer
of 32 neurons) which can be regarded as two independent,
complementary sub agents: one part A for accepting resp.
declining offers (cf. fig. 1 action part A) and one part B for
making offers (cf. fig. 1 action part B). Core (job) states
plus an ownership flag and offers to this core are observed
by part A. Core (job) states and slot (job) states are observed
by part B. The two networks generate two 1D-actions which
will be translated back into an M -dimensional action (one
dimension for each core) resp. K-dimensional action (one
dimension for each job slot). This results in a less intense
scaling behavior of the action space which is nevertheless
still exponential. The constructed agent type will be called
semi-aggregated agent.

Distributed agent The idea to split the agent up in several,
independent, complementary neural networks can be taken



one step further by dividing the semi-aggregated accepting
side A up into M -many acceptor networks and dividing the
offer side B up into K-many offer networks (in both cases
each with a hidden layer of 16 neurons). Each acceptor net-
work is responsible for managing the incoming offers of one
core if the agent owns the core. Each core chooser network
is responsible for making the offers of one job slot. Al-
though the amount of the neural networks increases sharply
by this, one big advantage arises: The M + K-many 1D-
actions of the M + K networks do not need to be trans-
lated into a multi-dimensional action vector. This is because
these actions are already intrinsically one-dimensional since
just one offer index respectively one core index has to be
selected per action.

Distributed agent with parameter sharing For the dis-
tributed agent, a possible optimization is local parameter
sharing. Instead of sustaining M+K independent networks
which constitute the distributed agent, we implement a local
parameter sharing between the M -many accepting networks
and between the K-many offering networks. Consequently,
only two neural networks that output in total M + K in-
trinsic 1D-actions will make up the agent. By doing so, a
faster training process and less overhead arises. Thus, the
observation and action spaces correspond to atomic actions
rather than aggregated actions which had to be translated to
the atomic level.

Distributed agent with free price setting So far, the con-
sidered agent types are able to make offers and to accept
offers, but they are not able to set the prices for the offers on
their own. Instead, they have to rely on fixed prices specified
as an environment parameter. To be able to set prices freely
the distributed Agent is extended by a third type of neural
network: a price setter network. The chosen price has to be
an integer from [0,max Prio] where max Prio denotes the
maximum priority of all job types in the run scenario.

Experiments2

The effect of intra-agent trading
We evaluate two types of jobs in this scenario: Long-
running, frequently occurring, low-priority jobs that block
the scarce compute cores and much rarer, shorter, high-
priority jobs. The exchange prices are given as an environ-
ment parameter according to the job’s priority. The intra-
agent trading mechanism enables the agents to trade com-
puting core access amongst each other. Figure 2 shows
that intra-agent trading significantly reduced the normalized
turnaround time of the highly prioritized job type. Trades
were used to let the high priority jobs get access to the cores.
The intra-agent trading thus outperformed the priority ori-
ented FCFS approach of the auctioneer.

2The used hyperparameters and environment parameters can be
found in the README file of the repository.

Figure 2: Mean and standard deviation of 10 independent
runs. Intra-agent trading significantly reduces the normal-
ized turnaround time of the highly prioritized job type. The
distributed agent architecture was used.

Agent architecture and scheduling performance

In this section the same scenario of the previous section is
evaluated. Here, we used 2 agents each with 3 self-refilling
job slots competing for 2 cores. Different agent architec-
tures lead to different performances. This is due to their dif-
ferent sizes of action spaces. It is shown in figure 3a that the
distributed agent architecture yields the lowest turnaround
time of the high priority job type. Interestingly, the fully ag-
gregated architecture yields the second lowest, normalized
turnaround time although it has the largest action space. The
better performance is achieved because the neural network
learns to trade with itself since it makes the decision for ac-
cepting as well as making offers. Since the used scaling is
still manageable it can derive an advantage compared to the
semi-aggregated agent type (cf. table 1).

Figure 3b shows the same data for the distributed agent
type as in figure 3a but compares those to the performance
of the distributed agent type with local parameter sharing. It
can be seen that the employment of local parameter sharing
improves the overall performance as well as the time neces-
sary for the adaption.

The scenario can also be scaled up to 4 agents each with 3
job slots who compete for 4 cores. Remarkably, this scaling
is already some orders of magnitude too high for the fully
aggregated agent architecture since its action space cardi-
nality is already out of scope (cf. table 1). So only the
performance of the distributed architecture with and with-
out parameter sharing as well as the semi-aggregated archi-
tecture can be compared. Figure 3c shows this. Again, the
distributed agent architecture significantly outperforms the
semi-aggregated architecture. Employing local parameter
sharing yields another performance boost in addition to that.

https://github.com/lr40/marl-scheduling.git


(a) 2 agents with self-refilling queues of 3
jobs compete for 2 cores.

(b) 2 agents with self-refilling queues of 3
jobs compete for 2 cores.

(c) 4 agents with self-refilling queues of 3
jobs compete for 4 cores.

Figure 3: Mean and standard deviation of 10 independent runs. The average, normalized, turnaround times of the high priority
job type when using the distributed (green), semi-aggregated (magenta), fully aggregated (blue) and distributed with local
parameter sharing (yellow) agent architecture. The lower the curve, the better the effective scheduling performance.

Acting unit 2 agents,
2 cores

4 agents,
4 cores

distributed offer unit 3 5

distributed acceptor unit 7 13

semi-aggregated offer unit 9 125

semi-aggregated acceptor unit 49 28 561

fully aggregated unit 441 35 701 125

Table 1: Cardinality of the action spaces of the acting (sub)
units for two scalings of the scenario.

Price level and scarcity
In real life, prices are expressions of relative scarcities. This
experiment investigates to what extent in the scheduling en-
vironment scarcer computational cores lead to higher prices
if free price setting is enabled. For the price setters, two re-
ward regimes are compared. To keep complexity low, there
is only a single job type in this scenario. Its priority and
length equals 5. 2 agents each with 3 job slots - i.e. a total of
6 jobs - compete for 2 cores in one scenario and for 4 cores
in the other scenario.

In Figure 4a, the price development in the commercial
reward regime is shown with scarce 2 compute cores and
more abundant 4 cores. For 2 compute cores the price rises
to the maximum priority of the scenario. The 6 price setters
learn to bid each other up to this level because access to the
few computational cores is so contested. On the other hand,
when the number of cores is doubled to 4, the commercial
price setters learn a significantly lower price level. So us-
ing the commercial reward function, the found price level
increases with the scarcity of computational cores.

Figure 4b, on the other hand, shows the price development
in the non-commercial reward regime in the same scenario
with 2 and 4 cores. In both cases, the price level rises to
the maximum value. In contrast to the commercial reward

(a) The price development
under commercial reward
when the cores are scarce (blue)
or less scarce (gold).

(b) The price development under
non-commercial reward when the
cores are scarce (blue) or less
scarce (gold).

Figure 4: Mean and standard deviation of 10 independent
runs are shown.

regime, the price also becomes maximum when more abun-
dant 4 cores are available. This is due to the fact that price
increases are not associated with any cost for the price setter
but increase the chances for an offer to be accepted. Thus
the high price becomes the dominant strategy. Using the
non-commercial reward function, prices reflect the priority
of the associated jobs rather than the scarcity of the compute
cores.

Price level and scheduling
How the free price setting influences the realized scheduling
will be analysed in this section. There are 2 agents, each
with a queue length of 3 jobs that want to compute three,
equally frequent job types with the priorities 2, 4, and 8 on
two cores.

How prices evolve under the commercial reward regime
is shown in Fig. 5a. In the beginning, there is a sharp initial
drop in the price levels of all job types. At a certain point,
however, the commercial price setters learn that outbidding
competitors is a decisive factor for success. As a result,



(a) Commercial reward:
average prices

(b) Non-commercial reward:
average prices

(c) Commercial reward:
average, normalized
turnaround times

(d) Non-commercial reward:
average, normalized
turnaround times

Figure 5: Mean and standard deviation of 10 independent
runs are shown. The priorities of the job types are given as
[2 (red), 4 (magenta), 8 (green)]. The subfigures (a) and (b)
only include realized prices of accepted offers.

prices for all types of jobs rise again but split up according
to their priority. The transitive order of prices then corre-
sponds to the transitive order of job type priorities. Overall,
the spectrum of prices spreads less upward than for the non-
commercial rewards (see subfig. 5b). This is because in the
case of commercial rewards there is an incentive for the in-
dividual price setter to outbid the lower job types with an
amount as low as possible. The price of the lowest priority
job type 0 is permanently very close to its priority of 2. At
the lower end of the possible priorities, the prices have to be
at their maximum to have any chance of competing with the
same or other job types.

How prices evolve under the non-commercial reward
regime is shown in Figure 5c. Here, too, we see an initial
drop in all price levels in the beginning. Compared to the
commercial reward regime, however, the drop is less deep
because there is less incentive for prices to fall. After that,
prices also split up according to the respective job priorities
when the price setters learn to outbid each other. However,
the splitting leads to significantly higher prices for job types
1 and 2. This is because the price setters under this reward
function get the same reward for all prices that are not too
high. Hence a strong incentive for price raises is given. In
the emerging system the low and medium prioritized jobs
types 0 and 1 have to be priced at their maximum in order to
have a chance against the arbitrarily high prices of job type

2.
The evolution of prices is reflected in the evolution of

turnaround times, shown in Figures 5c and 5d. Under both
reward functions, as the prices of higher-priority jobs in-
crease, the corresponding turnaround times decrease and
vice versa. The greater spread of price levels under non-
commercial rewards causes the turnaround times to spread
apart more sharply and quickly. For commercial rewards,
on the other hand, the normalized turnaround times are
closer together and change only more slowly. This slower
and weaker adaptation is caused by the less differentiated
prices.

Conclusion
This work addressed the question which agent architecture is
most successful in mastering the highly multi-discrete action
space of the trading-based scheduling environment. Success
depends on how the agents’ action and observation spaces
scale, which in turn is largely determined by the agent ar-
chitecture. Semi- and fully aggregated agent types exhibit
an exponential scaling behavior of their observation and ac-
tion spaces with the scenario size. This exponential scaling
behavior can be transformed into a linear one if the agent is
split up in multiple neural networks. We show that agents
of the distributed architecture adapt best and fastest to a sce-
nario where high priority jobs are to be prioritized over low
priority ones via intra-agent trading. Furthermore, it became
evident that the action space of the fully aggregated agent
type increased so strongly even at small problem sizes that it
is unsuitable for practical use. In addition, we show that the
performance of the distributed architecture further improved
when agent-level parameter sharing was implemented.

Finally, we examined the results when agents set the trad-
ing prices freely by themselves. We compared the effects
of two, different reward functions for the price setter. Using
the commercial reward function, the emergent prices can re-
flect the scarcity conditions in the environment, whereas the
non-commercial reward function causes prices to be a neu-
tral carrier of information about job priorities. For schedul-
ing different job types it was found that adaption succeeded
under both reward functions. The higher the priority of a job
type, the lower its mean normalized turnaround time and the
higher its found price. Compared to the commercial reward,
the non-commercial reward led to more differentiated prices,
lower turnaround times of high priority jobs and faster adap-
tion.

In conclusion, splitting the RL agent into different sub-
modules led to crucial performance improvements in the
trading-based scheduling environment compared to more
aggregated approaches. The reduced cardinality of the ac-
tion spaces even allowed for the successful introduction of
free price setting by the agents.



References
Busoniu, L., Babuska, R., and Schutter, B. D. (2010). Multi-agent

reinforcement learning: An overview. Chapter 7 in Innova-
tions in Multi-Agent Systems and Applications – 1 (D. Srini-
vasan and L.C. Jain, eds.), vol. 310 of Studies in Computa-
tional Intelligence, pages 183–221.

Dafoe, A., Hughes, E., Bachrach, Y., Collins, T., McKee, K. R.,
Leibo, J. Z., Larson, K., and Graepel, T. (2020). Open prob-
lems in cooperative AI. CoRR, abs/2012.08630.

Leibo, J. Z., Zambaldi, V., Lanctot, M., Marecki, J., and Graepel,
T. (2017). Multi-agent reinforcement learning in sequential
social dilemmas. Proceedings of the 16th Conference on Au-
tonomous Agents and MultiAgent Systems (AA-MAS 2017),
pages 464–473.

Lerer, A. and Peysakhovich, A. (2018). Maintaining cooperation in
complex social dilemmas using deep reinforcement learning.
arXiv:1707.01068 [cs].

Lupu, A. and Precup, D. (2020). Gifting in multi-agent reinforce-
ment learning. Proceedings of the 19th International Con-
ference on autonomous agents and multiagent systems, pages
789–797.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A., Veness, J., Belle-
mare, M., Graves, A., Riedmiller, M., Fidjeland, A., Ostro-
vski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I.,
King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis,
D. (2015). Human-level control through deep reinforcement
learning. Nature, 518:529–33.

Phan, T., Belzner, L., Gabor, T., and Schmid, K. (2018). Leverag-
ing Statistical Multi-Agent Online Planning with Emergent
Value Function Approximation. arXiv:1804.06311 [cs].

Rapoport, A. (1974). Prisoner’s Dilemma — Recollections and Ob-
servations. In Rapoport, A., editor, Game Theory as a Theory
of a Conflict Resolution, Theory and Decision Library, pages
17–34. Springer Netherlands, Dordrecht.

Schmid, K., Belzner, L., Gabor, T., and Phan, T. (2018). Ac-
tion markets in deep multi-agent reinforcement learning. Ar-
tificial Neural Networks and Machine Learning – ICANN
2018. ICANN 2018. Lecture Notes in Computer Science,
11140:240–249.

Schmid, K., Belzner, L., Müller, R., Tochtermann, J., and Linnhoff-
Popien, C. (2021). Stochastic Market Games. In Zhou, Z.-H.,
editor, Proceedings of the Thirtieth International Joint Con-
ference on Artificial Intelligence, IJCAI-21, pages 384–390.
International Joint Conferences on Artificial Intelligence Or-
ganization.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov,
O. (2017). Proximal policy optimization algorithms. CoRR,
abs/1707.06347.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang,
A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen,
Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G.,
Graepel, T., and Hassabis, D. (2017). Mastering the game of
Go without human knowledge. Nature, 550(7676):354–359.

Tanenbaum, A. S. (2009). Moderne Betriebssysteme. Pearson
Studium, 3. aktualisierte Auflage edition.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka,
I., Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg,
M., Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V.,
Budden, D., Sulsky, Y., Molloy, J., Paine, T. L., Gulcehre,
C., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama, D.,
Wünsch, D., McKinney, K., Smith, O., Schaul, T., Lillicrap,
T., Kavukcuoglu, K., Hassabis, D., Apps, C., and Silver, D.
(2019). Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature, 575(7782):350–354.

Yang, J., Farajtabar, M., Sunehag, P., Hughes, E., and Zha,
H. (2020). Learning to incentivize other learning agents.
34th Conference on Neural Information Processing Systems
(NeurIPS 2020).


	Introduction
	Related Work
	Approach
	Scheduling environment
	Rewards
	Agent architectures

	ExperimentsThe used hyperparameters and environment parameters can be found in the README file of the repository.
	The effect of intra-agent trading
	Agent architecture and scheduling performance
	Price level and scarcity
	Price level and scheduling

	Conclusion

