
Societies prefer the Middle-ground between Selfishness and Cooperation

Brandon Gower-Winter and Geoff Nitschke

Department of Computer Science
University of Cape Town, South Africa

GWRBRA001@myuct.ac.za, gnitschke@cs.uct.ac.za

Abstract

This study seeks to answer whether resource scarceness pos-
itively impacts resource sharing in socially stratified soci-
eties? We address this by developing an Agent-Based Model,
called NeoCOOP, which utilizes reinforcement learning and
artificial evolution as adaptive mechanisms to simulate the
the emergence and evolution of cooperative behaviour in
a Neolithic-inspired society. Experiments examine the re-
source trading preferences of the agents under varying de-
grees of environmental stress. Results indicate that neither
extreme selfishness or extreme altruism is desirable with all
agent-types opting for a ”middle-ground” approach to coop-
erative behaviour. Also, results show that as the frequency
of the environmental stress increases, agents will maintain a
more diverse distribution of resource trading beliefs.

Introduction
At the core of cooperative behaviour lies the dichotomy of
altruism and selfishness (Rachlin, 2002). Humans, unlike
other social mammals, exhibit cooperative behaviour on a
significantly larger scale and, in turn, exhibit a greater capac-
ity for both altruistic and selfish acts (Boyd and Richerson,
2009). No time in ancient history demonstrates this more
clearly than the transition from the Paleolithic to the Ne-
olithic whereby egalitarian, hunter-gatherer, groups transi-
tioned into sedentary agrarian societies with varying degrees
of social stratification (Powers and Lehmann, 2014). The
cause of this transitory period is likely multifaceted (Stiner,
2001) but, environmental stress is theorized to have played
a significant role in the evolution of cooperative behaviour
(Pereda et al., 2017).

Agent-Based Models (ABMs) are used to investigate the
emergence of complex social phenomena and the impact of
resource availability, as a function of environmental stress,
on the emergence of cooperative-behaviour (Aktipis et al.,
2016; Angourakis et al., 2015; Molin et al., 2021). These
ABMs implement cooperative behaviour in one of three
ways (although hybrid implementations do certainly exist):

Cooperative versus Defective Agents are categorized as
either purely selfish (defective) or purely altruistic (coop-
erative) and the emergent phenomena that arise from both

homogenized and mixed agent populations are compared.
These models are typically older and more exploratory (Ax-
elrod and Hamilton, 1981). Imitation or mimicking rules
may also be added to these models to allow the agents to
change their behaviour from cooperative to defective (or
vice versa) over time (Power, 2009).

Network-Based Cooperation This refers to the mod-
elling of agent-to-agent interaction and cooperation as
a directed graph that acts as a form of social network
(Chliaoutakis and Chalkiadakis, 2020; Molin et al., 2021).
In order for two agents to interact directly, they must be con-
nected within this network. ABMs implementing network-
based cooperation are less common than the other ABM
types with their existence heavily-reliant on the partition-
ing of agents along one or more metrics. Network-based
solutions provide agents with the ability to specialize their
behaviour more than other cooperation systems at the cost
of removing an agent’s ability to generalize.

Probability-Based Cooperation These Agents are an
extension to the cooperative or defective models described
above where the likelihood of agents exhibiting cooperative
or defective behaviour is recorded as some probability p
(Aktipis et al., 2016; Nhim et al., 2019). These ABMs
typically include some form of learning allowing agents
to adapt their p value in accordance with a predefined set
or rules or fitness-based algorithms such as Evolutionary
Algorithms (Revay and Cioffi-Revilla, 2018). Probability-
based cooperation ABMs are a ”middle-ground” of the
highly generalized cooperate-defect systems and the highly
specialized network-based systems.

In addition to studying emergent and evolving coop-
erative behaviour, ABMs are frequently used to study
the emergence of social stratification in ancient soci-
eties (Chliaoutakis and Chalkiadakis, 2020; Powers and
Lehmann, 2014). However, research marrying the two top-
ics is scarce meaning the impact of environmental stress
on cooperative-behaviour in socially stratified societies re-
mains unknown. Given this, we seek to answer whether en-



vironmental stress (resource scarceness) positively impacts
resource sharing (altruism) in socially stratified societies.

Thus, we developed an ABM called NeoCOOP, using
reinforcement learning and artificial evolution as adaptive
mechanisms to simulate emergent evolution of altruistic and
selfish behaviour in Neolithic-inspired households. Our ex-
periments examine agent resource trading preferences under
varying degrees of environmental stress. We hypothesize
the duration of environmental stress impacts agent resource
trading preferences with longer periods of stress resulting
in more altruistic behaviour in comparison to shorter, more
frequent, periods of stress. Also, we hypothesize that more
frequent periods of stress will result in the emergence of a
more diverse range of resource trading preferences.

Methods
NeoCOOP (Neolithic Agent Cooperation Model) is an
iteration-based ABM1 implemented in Python 3 that simu-
lates evolving altruistic and selfish behaviour in a Neolithic
inspired artificial society.

Agent Definition
Each agent represents a Neolithic household consisting of
one or more occupants. The motivation for this is that typ-
ical Neolithic households were ruled by a single patriarchal
figure who was responsible for making all of the family’s de-
cisions as well as managing their resources (Lehner, 2000).
NeoCOOP (Figure 1) uses settlements to keep track of one
or more households. A settlements primary purpose is to
store the coordinates of all the agents contained within that
settlement.

Unlike most cooperation-based ABMs, NeoCOOP allows
agents to make decisions based on their social status and the
social status of the agents they are interacting with. We de-
fine social status as the sum of an agent’s available resources
and its load, where load is the amount of resources the agent
has donated to other households over a period of time. To
facilitate social stratification, we use the self-organization
scheme described by Chliaoutakis and Chalkiadakis (2020)
whereby a relationship type can be determined for every
agent pair by comparing their social statuses. We define each
of the relationship types as follows:

is peer(h1, h2) =
|h2.ss− h1.ss|

max(h1.ss, h2.ss)
< L (1)

is auth(h1, h2) =
(h2.ss− h1.ss)

max(h1.ss, h2.ss)
> L (2)

is sub(h1, h2) = is auth(h2, h1) (3)

Where is peer, is auth and is sub describe whether
household h2 has a, peer, authority or subordinate relation-
ship with household h1 respectively. hn.ss is a household’s

1Source Code and ODD+D Description available at: https:
//github.com/BrandonGower-Winter/NeoCOOP

social status. L is the load difference ∈ [0, 1] input parame-
ter defines how much more social status an agent requires to
be considered an authority over another agent. In order for a
peer, authority or subordinate relationship to be formed, the
two households must be from the same settlement.

(a) (b)

Figure 1: Visualization of NeoCOOP ABM at initialization
(a), and at an arbitrary point in the simulation (b). Black
pixels indicate settlements, white pixels indicate uninhabited
land (foragable land) and grey pixels indicate farmland.

Environment & Vegetation Model
NeoCOOP places agents on a nxm grid-world and uses a
simple vegetation model based on Xu and Zhang (2021),
simulating monthly global environment properties (rainfall,
temperature and solar radiation) and vegetation growth. The
environment comprises two layers, each containing a nxm
matrix storing the grid-world’s soil moisture (mm) and veg-
etation (kg). Every iteration, the global environment sys-
tem generates 12 randomly sampled rainfall and temperature
values. The soil moisture system transforms the tempera-
ture values into potential evaporation (PET) values using the
Thornthwaite equation. For each of the 12 rainfall and PET
pairs, the soil moisture values of each cell are updated as
described by Xu and Zhang (2021). The vegetation growth
system then uses the soil moisture values to calculate vege-
tation growth for all uninhabited cells.

Resource Acquisition, Transfer and Consumption
Household agents in NeoCOOP are utility-based, meaning
that every agent associates each action in the model with
a utility value Uh,t(a). Every iteration, agents choose ac-
tions that, based on experience, return the greatest expected
reward. NeoCOOP has only two actions: FORAGE and
FARM. Both actions return the same resource type, so the
only difference between the two actions is their prerequisites
and quantity of resources returned. If the FORAGE action is
chosen, the agent will look for neighbouring cells with the
greatest vegetation density and take vegetation directly from
these cells equal to a predefined (forage consumption rate)
amount based on the number of occupants the agent has. If
the selected action is a FARM action, the agent will choose

https://github.com/BrandonGower-Winter/NeoCOOP
https://github.com/BrandonGower-Winter/NeoCOOP


its owned farming cells and gather resources from it directly.
If the agent does not own any farming cells, it will attempt
to acquire some from unoccupied neighbouring cells.

Farming is intended to return a greater surplus of re-
sources. However, it is an action that rewards a sedentary
lifestyle and, in times of stress, having access to the diverse
set of vegetation cells that are available when foraging can
be more beneficial. After the agents have completed their
resource acquisition actions, they update the utility values in
accordance with the following RL-based equation:

Uh,t+1(a) = Uh,t(a) + ηh(Rh,t(a)− Uh,t(a)) (4)

Where, h is the agent, a is the action, ηh is the stubborn-
ness of the agent, t is the iteration, and U and R are the
utility and reward functions respectively.

Once acquisition is complete, agents determine if they
have enough resources to satisfy their needs for the itera-
tion. If not, the agent asks its authority agents if they would
be willing to give some of their excess resources to the agent
as a donation. For each authority asked, a random value
∈ [0, 1] is generated and compared to the authority agent’s
subordinate transfer property. If the generated value is less
than the subordinate transfer property, the authority agent
is willing to grant donations for that iteration. Whenever a
donation is granted, the authority agent has its load property
increased by the resources donated. If an agent has asked
all of its authority agents for resources and it will still go
hungry, it then repeats this process for its peer relationships
with the donating agent using its peer transfer property to
determine if the donation succeeds.

If that is still not sufficient, the agent will then ask all of its
subordinates for resources. Given that we are modelling Ne-
olithic households, if a subordinate is asked to give any of its
excess resources to an authority agent, it does so with 100%
certainty. The peer transfer and subordinate transfer prop-
erties allow us to simulate different agent types that exhibit
varying degrees of altruistic and selfish behaviour. When re-
source transfer is complete, agents consume their food and
determine their hunger using equation 5.

hunger(x) = min(
x.resources

x.required resources
, 1.0) (5)

Population Growth, Loss and Migration
Every iteration, households may birth additional occupants
in accordance with the birth rate and their hunger. If a
household reaches carrying capacity, the split household
function is called and the household is divided into two sepa-
rate households. Occupants and resources are split amongst
the two new households but load is not. That is, the new
household signifies the arrival of a new patriarchal figure
within the community and someone who must work to gain
the same social status as their parent household.

Households may lose one or more occupants in accor-
dance with the death rate and their hunger. If a household

reaches zero able occupants, it is removed from the simu-
lation. Agents can migrate to another settlement or form a
settlement of their own every yrs per move iterations. This
decision is based on the agent’s satisfaction which is the av-
erage hunger of the agent over the past yrs per move itera-
tions. If the satisfaction of the agent is low, it has a higher
likelihood of moving. When an agent moves, it chooses be-
tween all settlements in its vicinity or an unclaimed cell.
Typically, an agent will move to the settlement with the most
resources. However, if none of the neighbouring settlements
have enough resources, the agent will choose to make its
own settlement at a new location.

Agent Adaptation
Generational agent adaptation uses two evolutionary algo-
rithms: a Genetic Algorithm (GA) (Whitley (1994)) for ver-
tical generational adaptation and a Cultural Algorithm (CA)
(Reynolds (1994)) for horizontal generational adaptation.
Both use an agent’s genotype containing six gene values:
Forage Utility and Farm Utility (Utility value of the FOR-
AGE / FARM action respectively), Stubbornness and Con-
formity (Individual and Generational adaptation learning
rates respectively), Peer Transfer and Subordinate Transfer
(The probability an agent will accept a resource transfer re-
quest from a peer / subordinate agent respectively). Both the
GA and CA make use of influence when determining best
performing settlements. Influence describes the probability
that two settlements will interact with each other. This is
done using the XTENT formula (Equation 6):

I(s1, s2) = W (s2)
β −mD(s1, s2) (6)

Where, s1 and s2 are settlements, I(s1, s2) is the influ-
ence of s2 on s1, W (s2) is the social status of s2, D(s1, s1)
is distance from s1 to s2. β and m are coefficients describing
required social status of one settlement to influence another.
Calculating influence of every settlement on a given settle-
ment, gives a probability distribution (equation 7).

P (s1, s2) =
I(s1, s2)∑

k∈K I(s1, sk)
(7)

Where, P (s1, s2) is the probability of settlement s2 influ-
encing settlement s1 and K is the set of neighbouring settle-
ments that have a positive influence value I(s1, sk) on s1.

The GA executes whenever the split household function
is called. The child agent produced is a combination of two
parents with the first parent being the household that reached
capacity and the second parent gotten via roulette wheel se-
lection (Eiben and Smith, 2015). This selection uses the
social status of other agents within the same settlement of
the first parent and from other settlements that have enough
influence. The offspring agent is produced using Uniform
crossover with Gaussian mutation for genes 1-4 and ran-
dom mutation for genes 5 and 6. The CA uses Knowledge



Sources (Reynolds and Peng, 2004) to diversify how agents
are influenced. They are: Normative (Influence on an agent’s
beliefs from its settlement), Spatial (Influence on an agent’s
beliefs from another settlement) and Domain (Equivalent to
GA mutation function, where domain influence mutates one
of the agent’s beliefs).

Every influence frequency iterations, agents are influ-
enced in accordance with the influence rate. If an agent
is selected for influencing, a roulette wheel is spun to de-
termine from which knowledge source influence will come
from. Influence from the Domain knowledge source occurs
at a rate defined by the mutation rate parameter. Influence
from the Normative and Spatial knowledge sources occur
with varying probability defined by equations 8 and 9.

N(sh, si) = max(
sh.ss

si.ss
, 1.0) (8)

S(sh, si) = 1−N(sh, si) (9)

Where, N and S are the probability of choosing the nor-
mative and spatial knowledge sources respectively, sh is the
settlement of the agent being influenced, si is the settlement
that would influence agent h if the spatial knowledge source
is selected. si is determined by performing roulette wheel
selection on all neighbouring settlements with a positive in-
fluence on settlement sh. Roulette wheel weights are deter-
mined by the values returned by Equation 7.

Each settlement’s beliefs are represented by Belief Spaces
Bs. Belief Spaces have the same structure as the agent geno-
type with each property calculated using a weighted average
of the corresponding property of all agents within that set-
tlement. The weight an agent contributes to the belief space
is determined using its social status relative to the social sta-
tus of the other agents in the same settlement. If an agent
is influenced by the normative knowledge source, the belief
space that influences it is the belief space of the settlement
the agent belongs to Bsh . If the agent is influenced by the
spatial knowledge source, the belief space that will influ-
ence the agent is the belief space of the settlement selected
during roulette wheel selection (Bsi ). Agent properties are
influenced as follows (equation 10):

Gh,t+1(p) = Gh,t(p) + σh(Bs,t(p)−Gh,t(p)) (10)

Where, p is the agent property (genes 1-6), t is the
timestep, G is the agent’s genotype, σh is the conformity
of the agent and B is the selected belief space (Bsh or Bsi ).

Experiment Design
Before running our experiments, we parameter tuned our
model using values derived from other works (See Table 1)
and, where no parameters could be be found, we performed
multi-objective optimization using Optuna2. The optimiza-
tion process ran for 119 simulation runs and final input pa-
rameters for our model can be seen in Table 1. A report of

2Optuna available at: https://optuna.org/.

Figure 2: Example of the generated rainfall data for a single
simulation run using Equations 11 and 12

the optimization process is included with the source code1.
Experiments apply environmental stress over time, via vary-
ing rainfall each iteration according to sine waves of vary-
ing frequencies. This approach is similar to Molin et al.
(2021) where environmental stress is induced periodically.
Using f for each scenario, we linearly interpolate (Equation
12) every iteration i between two predefined ranges called
max rainfall and min rainfall using the the output of the sine
waves (Equation 11) at iteration i/M as the mixing parame-
ter x.

s(x) = 0.5sin(2πx.f) + 0.5 (11)

lerp(rmin, rmax, x) = rmin + s(x) ∗ (rmax − rmin) (12)

An example of what the result of this process looks like
can be seen in Figure 2. The stress scenarios investigated
are as follows: f ∈ [1, 2, 4, 8, 16, 32] . We also explore two
scenarios in which environmental stress is non-existent and
perpetual (N and P ) respectively.

Each simulation was initialized with 100 agents and 10
settlements. At initialization, each agent in the model has
their peer transfer and sub transfer agent properties ran-
domly assigned ∈ [0, 1]. The settlements were randomly
placed on the grid-world and the model was run for M =
10000 iterations. All stochastic processes utilized a pseudo-
random number generator to ensure reproducibility. Each
scenario was simulated 50 times for a total of 400 simula-
tion runs across the 8 stress scenarios.

https://optuna.org/


Property Value
Iterations (M) 10 000

Initial Households 100
Initial Settlements 10

L 0.61

Carrying Capacity 101

Years Per Move 51

Birth Rate 0.15%2

Death Rate 0.1%2

β 1.51

m 0.0051

Mutation Rate 0.1
Influence Rate 0.1

Influence Frequency 15
Stubbornness Range ∈ [0.2, 0.7]
Conformity Range ∈ [0.2, 0.7]

Table 1: NeoCOOP Initialization Parameters. Some model
properties are from Chliaoutakis and Chalkiadakis (2020)1

and Cardona et al. (2022)2. Properties without reference
were determined by multi-objective optimization (Optuna).

Results and Discussion
Figure 3 showcases the mean populations levels over the
course of the simulations. A Kruskal-Wallis H-test for
independent samples and Dunn’s post test with Bonferroni
correction (p = 0.05) reveal that scenarios 1 and P had
significantly higher population levels than all of the other
scenarios investigated. Scenario 2 had a higher population
level than scenarios 4, 8, 16 and 32 with the aforementioned
scenarios maintaining similar population levels. Expectedly,
the Perpetual drought scenario P had the lowest population
levels.

The Wilcoxon rank-sum test (p = 0.05) was used to
determine statistical differences between two resource
transfer beliefs. The tests reveal that only scenario 1 had
significantly distinct final peer / subordinate transfer beliefs
with the peer transfer being significantly greater than
subordinate transfer. In fact, the mean peer and subordinate
transfer properties maintain a value of 0.5 for all stress
scenarios. Figure 4 showcases the various distributions of
the final resource transfer beliefs. In all scenarios, agents
avoided extreme cooperation and selfish values (resource
transfer beliefs close to 1.0 and 0.0 respectively).

We hypothesized that as the frequency of the environ-
mental stress increased, the agents would become more
selective. Initial results seem to disprove that with neither
the peer or subordinate transfer properties seeming to have
undergone much evolution and maintaining a mean value of
0.5. However, the mean is not an appropriate measurement
for two reasons: One is a limitation of this study where
initial agent resource transfer beliefs are taken from a uni-
form distribution which naturally biases the mean towards
0.5 (Future work will explore varying the initial resource
transfer distributions). The other reason is that only looking
at the mean does not reveal the underlying distribution of

Figure 3: Mean population level for each stress scenario.

the agents beliefs. Figure 5 demonstrates the importance
of this whereby we can see that agent beliefs are more
homogenized the lower the stress frequency (with N and
P representing the two extremes). Diversity maintenance
in high frequency stress situations is a phenomena docu-
mented in other organisms such as multi-trophic rockpool
communities (Romanuk et al., 2010). Our model suggests
that this is also the case for ’human-like’ resource trading
agents. These findings don’t disprove our initial hypothesis,
but rather add nuance to our overall understanding.

The reason why diversity maintenance occurs is due to
cyclic population aggregation and dispersal. Figure 6 shows
that average settlement household density decreases during
times of environmental stress. This includes scenario N
when the environment starts to reach its carrying capacity.
Results indicate that mean settlement density goes through
periods of increasing settlement size at the start of the
environmental stress and decreasing settlement size towards
the end of the stress period. Agents dispersed into groups of
between one and four households. Population dispersal due
to environmental stress is a well-known phenomena (Ken-
nett et al., 2007). The result of this dispersal, within context
of the model, is that households have fewer households to
be interact with / be influenced by. This results is diversity
maintenance which explains the results our simulations
produced. Furthermore, we found that monitoring the
fluctuations in the degree of social stratification (Figure 4c)
could be used to predict cultural diversity in our model with
more frequent fluctuations maintaining a higher degree of
cultural diversity. Ascertaining whether this finding is true
in all cases is the topic of future work.

The majority of agents across all scenarios maintained
their mean resource transfer (peer and sub) properties within
the range: [0.4, 0.6] for all scenarios. This is distinct from



(a) (b) (c)

Figure 4: Final distribution of the peer (a) and subordinate (b) transfer agent properties and agent social status inequality (c)
for all stress scenarios investigated.

(a) (b)

Figure 5: Final distribution of the transfer agent properties (peer and sub) for the N (a) and (P ) (b) stress scenarios.

Figure 6: Mean Number of Households per Settlement.

the mean resulting from the initialization process because
if [0.4, 0.6] was not the optimal range for probabilistic re-
source transfer beliefs, the agents would’ve simply evolved
to the optimal range. This ”middle-ground” phenomena has
been documented previously (Angourakis et al., 2015) in
scenarios where cooperative food storage is low and house-

hold storage efficiency is high. Both of which are applicable
in NeoCOOP. How this optimal range of cooperativeness re-
lates to diversity maintenance is interesting. It is not entirely
clear that the same trends would persist as the optimal range
of resource transfer beliefs change both positively and nega-
tively. This provides a clear opportunity for future research.

Conclusions and Future Work

This study investigated if environmental stress positively im-
pacted resource sharing in socially stratified societies. Our
results indicate that neither extreme selfishness or altruism is
desirable with agents opting for a middle-ground approach
to their cooperative behaviour. Results also indicated that
as the frequency of environmental stress increases, agents
maintain a more diverse set of resource transfer beliefs.

Future work will extend NeoCOOP to support different
forms of resource storage that accurately reflect resource
storage strategies of Neolithic societies. We will also investi-
gate different initial resource transfer belief distributions and
non-uniform terrains to further understand the role the envi-
ronment has on emergent altruistic and selfish behaviour.
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