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Introduction
In many social and biological settings mutation or be-
havioural exploration is non-negligible (Traulsen et al.,
2009; Rand et al., 2013; Zisis et al., 2015). It is also highly
relevant in Artificial life systems (Ikegami and Hashimoto,
1995; Bedau, 2003; Sayama, 2011). The replicator-mutator
equation (Komarova, 2004) constitutes a fundamental math-
ematical framework for the modelling, analysis and simu-
lation of such complex systems. It has been used in the
study of a variety of problems, including population genet-
ics (Hadeler, 1981), autocatalytic reaction networks (Stadler
and Schuster, 1992), language evolution (Nowak et al.,
2001) and the evolution of cooperation (Imhof et al., 2005),
just to name a few.

Let us assume an infinite population consisting of n
types/strategies S1, · · · , Sn whose frequencies are, respec-
tively, x1, · · · , xn. The reproduction rate of each type, Si,
is determined by its fitness or average payoff, fi, which is
obtained from interacting with other individuals in the pop-
ulation. The interaction of the individuals in the population
take place within randomly selected groups of multiple par-
ticipants. That is, they play and obtain their payoffs from a
multi-player game, defined by a payoff matrix. We consider
here symmetric games where the payoffs do not depend on
the ordering of the players in a group. Due to mutation, indi-
viduals spontaneously change from one strategy to another,
which is modeled via a row-stochastic matrix (called the mu-
tation matrix), Q = (qji), j, i ∈ {1, · · · , n}. The entry qji
characterizes the probability that a player of type Sj changes
its type or strategy to Si. The replicator-mutator equation
is a set of differential equations describing the evolution of
frequencies of different strategies in a population that takes
into account both selection and mutation mechanisms, and
is given by

ẋi =

n∑
j=1

xjfj(x)qji − xif̄(x) =: gi(x), i = 1, . . . , n, (1)

where x = (x1, x2, . . . , xn) and f̄(x) =
∑n

i=1 xifi(x) de-
notes the average fitness of the whole population. The repli-
cator equation is a special case of (1) when the mutation
matrix is the identity matrix. In reality, individuals’ inter-
actions are often affected by the constantly changing envi-
ronments making it impossible to assign deterministic pay-

offs that correctly characterize these interactions. To capture
uncertainty, random multi-player multi-strategy games are
considered (Duong and Han, 2015; Gokhale and Traulsen,
2010), in which the payoff entries are random variables. In
particular, for two-player two-strategy games with a payoff
matrix P and a mutation matrix Q given by

S1 S2( )
S1 a11 a12
S2 a21 a22

, Q =

S1 S2( )
S1 1− q q
S2 q 1− q

where aij , i, j ∈ {1, 2} is the payoff that a player using strat-
egy Si obtains when interacting with another player using
strategy Sj . The replicator-mutator equation (1) becomes

ẋ = Ax3 +Bx2 + Cx+D, (2)

where x is the frequency of the first strategy and 1−x is the
frequency of the second one and

A = a12 + a21 − a11 − a22,

B = a11 − a21 − 2(a12 − a22) + q(a22 + a12 − a11 − a21),

C = a12 − a22 + q(a21 − a12 − 2a22), D = qa22.

Models and Methods
This extended abstract summarizes the main results of re-
cent works in (Duong and Han, 2019, 2021) on the statistics
of the number of equilibria in two-player (i.e. pairwise) so-
cial dilemma random games. To this end, Duong and Han
(2019, 2021) adopt the following parameterized payoff ma-
trix to study the full space of two-player social dilemma
games where the first strategy is cooperator and second is
defector (Santos et al., 2006; Wang et al., 2015; Szolnoki
and Perc, 2019), a11 = 1; a22 = 0; 0 ≤ a21 = T ≤ 2 and
−1 ≤ a12 = S ≤ 1, that covers the following games

(i) Prisoner’s Dilemma (PD): 2 ≥ T > 1 > 0 > S ≥ −1,

(ii) Snow-Drift (SD) game: 2 ≥ T > 1 > S > 0,

(iii) Stag Hunt (SH) game: 1 > T > 0 > S ≥ −1,



(iv) Harmony (H) game: 1 > T ≥ 0, 1 ≥ S > 0.
For these social dilemma games, equation (2) reduces to(
T+S−1

)
x3+

(
1−T−2S+q(S−1−T )

)
x2+

(
S+q(T−S)

)
x = 0.

(3)
In (Duong and Han, 2019, 2021), the pay-off entries S and

T are random variables uniformly distributed in the corre-
sponding interval in each game; for instance, T ∼ U([1, 2])
and S ∼ U([−1, 0]) for PD and similarly for other games.
The authors established the probability distributions of the
number of equilibria for the above social dilemmas. Math-
ematically, it amounts to find the probabilities that the cu-
bic equation (3) has k ∈ {1, 2, 3} solution(s) in the interval
[0, 1]. A natural approach is to express the conditions that
(3) has k ∈ {1, 2, 3} in terms of the coefficients T and S
and then compute the probability for that to happen. The
key challenge is that the obtained conditions are compli-
cated. To this goal, Duong and Han (2019, 2021) employ
suitable changes of variables, which transform the problem
of computing the probabilities to calculating areas, and per-
form delicate analysis.

Main results
The main results of Duong and Han (2019, 2021) are the
following explicit formulas for the probabilities pGi that a
game G ∈ {SD,H, SH,PD} has i ∈ {1, 2, 3} equilibria:

Suppose that S and T are uniformly distributed in the cor-
responding intervals as above. Then:

• Snow Drift (SD)

p1 = 0, p2 = 1, p3 = 0.

• Harmony game (H)

p1 = 0, p2 = 1, p3 = 0.

• Stag-Hunt game (SH)

p1 = 1− p2 − p3.

p2 =
q

2(1− q)
.

p3 =


1− q

2(1−q) −
1

1−2q

[
(3

√
q+2)2

√
q(5q3/2+3q2−9q−3

√
q+4)

12(
√
q+1)3 ,

+−27q3−18q2−32
√
1−2qq+48q+16

√
1−2q−16

12q

]
, 0 < q ≤ 4/9,

1− q
2(1−q) −

8
√
q(1−2q)2

3(1−q)3 , 4/9 < q < 0.5.

• Prisoner’s Dilemma (PD)

p1 = 1− p2 − p3.

p2 =

{
3q

2(1−q) if 0 < q ≤ 1/3,

3− 1
2q(1−q) if 1/3 ≤ q ≤ 1/2.

p3 =


1

1−2q

[
− 2(q3+3q2+(4

√
1−2q−6)q−2

√
1−2q+2)

3q − 1
2

q3

(1−q)

]
, 0 ≤ q ≤ 3−

√
5

2 ,

−16(
√
1−2q−1)q3/2+2q5/2+15q3+(8

√
1−2q−25)q2+q−8

√
1−2q+2

√
q(8

√
1−2q−5)+5

6(
√
q−1)

3
(q3/2+q)

, 3−
√
5

2 < q ≤ 4/9,

1
2
(1−2q)2

q(1−q) , 4/9 < q < 0.5.

As a consequence, other statistical quantities such as the
mean value, ENoE, and the variance, VarNoE of the num-
ber of equilibria can also be derived using the following for-
mulas

ENoE =

3∑
i=1

i pi, VarNoE =

3∑
i=1

pi(i− ENoE)2. (4)

These quantities are depicted in the Figure below. The re-

SH PD SD and H

k = 3
k = 2
k = 1

q q q

q

Probability of having k equilibria (pk) in a social dilemma

Average and variance of the number of  
equilibria in a social dilemma

SD&H - average
SD&H - variance
SH - average

PD - average
SH - variance

PD - variance

sults clearly show the influence of the mutation on the num-
ber of equilibria in SH-games and PD-games. The probabil-
ity distributions in these games are much more complicated
than in SD-games and H-games and significantly depend on
the mutation strength.

Summary and outlook
We have summarized the results of (Duong and Han, 2019,
2021) which provide explicit formulas for the probability
distributions of the number of equilibria in term of the mu-
tation probability for random social dilemmas. The analysis
is highly important and practical for both social/biological
and Artificial life systems, because it is often the case that
one might know the nature of an interaction at hand (e.g.,
a coordination or cooperation dilemma), but it is difficult
and/or costly to measure the exact values of the game’s pay-
off matrix (for instance for models with random environ-
ments). For future work, it would be interesting and natural
question to extend the results to other approaches to study-
ing random social dilemmas such as finite population dy-
namics and payoff disturbances (Huang and Traulsen, 2010;
Szolnoki and Perc, 2019; Amaral and Javarone, 2020a,b), as
well as to multi-player (Pacheco et al., 2009; Souza et al.,
2009; Luo et al., 2021) and more complex social dilemma
games such as the climate change and technological race in-
teractions (Han et al., 2020; Sun et al., 2021).
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