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A common challenge faced by all decentralized multi-
agent systems (MAS) is the exploration-exploitation
dilemma. This stems from the fact that gathering new infor-
mation about the environment (i.e., exploration) and making
use of currently known information (i.e., exploitation) tend
to be mutually exclusive activities. While heavily biasing
an MAS towards exploration would allow large amounts of
data to be gathered, it would be prevented from fully bene-
fiting from this information. Conversely, over-exploitation
may yield fast convergence times but can also result in
agents being trapped in local optima or being unable to
adapt to dynamic environments. Therefore, maximizing the
performance of a system, especially when operating in dy-
namic environments, requires some sort of regulation of the
amount of exploration and exploitation carried out by an
MAS. In this work, we outline how the strategy developed
in our work (Kwa et al., 2021) allows for the regulation and
control of a swarm’s exploration and exploitation dynamics
(EED) within the context of tracking fast-moving evasive
and non-evasive targets.

Previously, Esterle and Lewis (2020) have shown that in-
creasing the level of inter-agent communications improved
the overall tracking performance of the system while track-
ing slow-moving targets. However, it has been demonstrated
that this is not the case when tracking fast-moving non-
evasive targets (Kwa et al., 2020). This is because higher
levels of inter-agent connectivity leads to over-exploitation
of a target’s positional information, causing agents to lose
track of the target once they have been outrun. Similarly,
low levels of connectivity result in too much exploration and
insufficient exploitation, preventing agents from effectively
tracking the target. As such, an optimal level of connec-
tivity exists at which the level of exploration and exploita-
tion carried out by the MAS was relatively balanced, maxi-
mizing its tracking performance. Similar optimal levels of
connectivity maximizing system performance were found
in other scenarios such as in obtaining a dynamic consen-
sus (Mateo et al., 2019) and in a collaborative stick pulling
task (Hamann, 2018).

In Kwa et al. (2020), a tracking strategy was proposed

based on a memory-less Particle Swarm Optimization (PSO)
algorithm, enabling the tracking of a fast-moving non-
evasive target. However, this strategy does not allow the
tracking of fast-moving evasive targets due to insufficient
exploitation. In this work, we demonstrate the pivotal role
played by short-term memory when tracking fast-moving
evasive targets that can move faster than the individual con-
stituent agents of the tracking MAS. Its introduction also
gives another parameter that can tune an MAS’ EED in
conjunction with the level of inter-agent connectivity. This
tuning allows the system to adapt its collective dynamics
to maximize its performance while tracking different target
numbers, speeds, and movement profiles.

The proposed strategy essentially consists of two behav-
iors: (1) promotion of agent aggregation around a point of
attraction (exploitation), and (2) an adaptive inter-agent re-
pulsion behavior (exploration). These behaviors generated
two velocity vectors at each time-step that were combined
to give a final agent velocity vector:

vi[t] = vi,att[t] + vi,rep[t], (1)

where vi,att[t] and and vi,rep[t] are the velocity vectors
generated by the attractive component and the repulsion
component respectively. Selecting the degree, k, of the
inter-connecting k-nearest neighbor communications net-
work controlled the amount of social interaction between the
swarming agents, and hence the overall EED of the swarm.

The main difference between the algorithm presented here
and the one in Kwa et al. (2020) is the addition of a short-
term memory to the agent aggregation component, thus en-
abling the tracking of evasive targets. This attractive com-
ponent generates an attractive velocity vector:

vi,att[t + 1] = ωvi[t] + cr
(
p[t + 1] − xi[t + 1]

)
, (2)

where p is the most recent target position as observed by an
agent and its neighbors, xi is the position of agent i, ω is
the velocity inertial weight, c is the social weight, and r is a
number randomly drawn from the unit interval.

In the pursuit of an fast-moving evasive target, the use of
agent-based memory gives the swarm a longer lasting point



of attraction. This increases the amount of exploitation car-
ried out by the MAS, allowing it to close in on a target even
though agents are unable to detect the presence of the target.
As such, each agent is given a memory, M , with a duration
of tmem. Should the amount of time elapsed since p was last
updated exceed tmem, p will be cleared by setting p = xi[t],
removing the point of attraction from consideration when
calculating the final velocity vector. Doing so causes the
agents to move away from each other, expanding their for-
mation, thereby carrying out area exploration. Therefore, by
lengthening the duration of tmem, an MAS will carry out a
higher level of exploitation while shortening the duration of
tmem will shift the EED balance in favor or exploration.

To study the performance of the system, we simulated
an MAS with 50 agents tracking a single evasive and non-
evasive target over a period of 100,000 time-steps and calcu-
lated the percentage of time that the target was tracked (per-
formance measure Ξ). An Engagement Ratio, the proportion
of time all agents spend actively trying to move towards a
target, was also calculated to quantify the MAS’ EED.
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Figure 1: Engagement-Tracking plots of a swarm with dif-
ferent tmem and k tracking an evasive (top) and a non-
evasive (bottom) target. Darker shaded points indicate
swarms using networks with higher values of k.

As seen in Fig. 1 not only is there an optimal level of con-
nectivity at which an MAS’ tracking performance is maxi-
mized, there is also an optimal level of engagement at where
this maximum occurs. The optimum engagement is also
higher when tracking non-evasive targets compared to when
tracking evasive targets. This is because an evasive target

makes its movements to avoid contact with pursuing agents,
resulting in more exploration demanded from the MAS to
track the target, which is associated with lower engagement
ratios. Therefore, reducing the MAS’ level of connectivity
reduces the system’s engagement, leading to better tracking
performances when tracking evasive targets.

The figures also demonstrate the crucial role of short-
term memory in facilitating the tracking of an evasive tar-
get. Without its presence, it can be seen that the MAS was
unable to track the evasive target. This is because the intro-
duction of short-term memory generates a persistent point of
attraction based on a target’s last known position, giving the
agents the ability to aggregate at that point even though the
target may have moved away. Without memory, while the
pursuing agents may periodically encounter the target, the
agents repel each other and expand until the system reaches
a static equilibrium position and is unable to close in on the
target because of the target’s evasive maneuvers. Similarly,
the plots also illustrate the detrimental nature of using long-
term memory. The use of longer memory lengths, which
is associated with higher levels of exploitation, causes the
MAS to over-exploit outdated target information, resulting
in agents aggregating at a location where the target is no
longer present, hence leading to lower tracking performance.

Future work in this field will involve developing and tai-
loring agent behaviors and communication topologies for
use in varying swarm densities. In addition, the use of het-
erogeneous MAS can also be studied to take advantage of
different agent behaviors and physical capabilities.
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