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Program synthesis (PS) and genetic programming (GP) al-
low non-trivial programs to be generated from example data.
Agent-based models (ABMs) are a promising field of appli-
cation as their complexity at a macro level arises from sim-
ple logic at the individual agent level, which can be encoded
with relatively few lines of code in the agent update func-
tion. Learning only the relatively concise agent update rules
makes it feasible to evolve complex emergent behaviours
without having to synthesize correspondingly long, complex
programs, which remains a challenging problem for current
GP techniques.

In this work we demonstrate a new domain-independent
approach which is able to evolve interpretable agent logic
of an ABM from scratch. Our approach is closely related
to inverse generative social science (Vu et al., 2019), which
is a discovery process for testing multiple hypotheses auto-
matically from data, in order to explain and illuminate ob-
served phenomena. This technique enables us to generate
models which are relatively free from existing domain pri-
ors and human preconceptions, and may shed light on com-
pletely new dynamics which have been overlooked because
they are unintuitive or non-obvious. The resulting output is
an interpretable symbolic model which can be understood
and extended by a human modeller. Automatically learn-
ing the model logic for ABMs is not a new idea, however
the existing literature, for example Vu et al. (2019), Hus-
selmann (2015), Gunaratne and Garibay (2017) and Zhong
et al. (2017), has mainly focused on learning model structure
by mutating an existing model which is already adapted to
the modelling problem in question, and works by recombin-
ing a set of “primitives” which is tailored to the domain, and
therefore requires prior domain knowledge. This is some-
times referred to as “structural calibration’.

Listing 1: Simplified flocking generated code
params = [-7.0192e7, -1.6739e9, 111829.82, 8.6766e9,

-1.6476e6, 214.2948, 5.4268e8, 4.9987]
temp_a = cos(params[3])
momentum = (temp_a .+ 1 - 2 ./ params[6]) .* velocity
separation = (temp_a .+ 4 ./ params[6]) .* nearby_fine_position
alignment = nearby_velocity
cohesion = (1 ./ params[6]) .* nearby_coarse_position
new_velocity = momentum .+ separation .+ alignment .+ cohesion
new_velocity = normalise(new_velocity) .* params[8]

We successfully induce the agent update rule of models
in two different domains — flocking and opinion dynamics
— by employing an evolutionary algorithm which evolves a
population of individuals consisting of programs expressed
in a domain-specific language (DSL). The genetic algorithm
is a reimplementation of the one described in Real et al.
(2020) and Real et al. (2019). We employ a flexible DSL
which consists of basic mathematical building blocks. The
learned programs are combinations of the DSL operators and
operands. The fitness of each individual in the population is
evaluated by executing its program and comparing the out-
put to the output of a reference model. The best programs
are then copied and randomly changed — i.e. mutated. This
process is repeated until the average fitness of the population
reaches a desired threshold. We also perform additional ex-
periments to find out how well the evolved solutions perform
with out-of-sample data — i.e., trajectories of the model
which have not previously seen during training/evolution.
The reference models used were the Boids flocking model
(Reynolds, 1987) and a threshold opinion dynamics model
(Deffuant et al., 2000).

For the flocking model a low loss of 3.558 was achieved,
indicating that the best learned behaviour is able to repro-
duce the target data very accurately. To understand this low
loss value we can assess whether it corresponds to model
results which are subjectively similar to the reference be-
haviour, and whether it captures important flocking model
characteristics. Figure 1 compares the output of the ref-
erence model and the best learned behaviour. The plot
shows the agent positions after running each model for 80
timesteps. Subjectively, these plots show clear similarity in
the flocking patterns. Many of the agents are in approx-
imately the same position in both plots, and recognisable
movement patterns and clusters of agents can be identified.

It is also informative to analyse the generated code it-
self. Listing 1 shows code for the synthesised flocking be-
haviour with the lowest loss. This was manually simplified
to aid understanding by removing redundant lines, rearrang-
ing and combining lines, manipulating mathematically to
extract common factors and renaming variables which cor-



Figure 1: Comparison of a single realisation of the refer-
ence flocking model in a Cartesian 2D space (top) with the
evolved flocking model (bottom). Every trace follows the
trajectory of a single agent over time.

respond to interpretable concepts. The simplified code is
very similar to the reference model, incorporating variables
which are recognisable as the separation, alignment and co-
hesion concepts found in the original Boids model. Being
able to interpret this learned symbolic model is an advan-
tage of the PS approach.

Listing 2: Simplified opinion dynamics generated code
params = [-44.4, 0.08822]
delta_opinion = opinion_a - opinion_b
temp_b = 2 * params[2] * delta_opinion - delta_opinion ^ 3

- delta_opinion ^ 5
temp_b /= (params[1] - opinion_a)
temp_b = abs(temp_b) - delta_opinion ^ 4
next_opinion_a = opinion_a
next_opinion_b = opinion_b
if isapprox(temp_b, 0.0, atol=0.001)

temp_c = delta_opinion /
(params[2] * (params[1] - opinion_a))

next_opinion_a = opinion_a + 2 * temp_c
next_opinion_b = opinion_b - temp_c

end
return Vec2(next_opinion_a, next_opinion_b)

Figure 2: Side by side comparison of 40 time-steps of a
single realisation of the reference opinion dynamics model
(left) with the evolved opinion dynamics model (right). The
x-axis shows simulation time and the y-axis shows the opin-
ion value for each agent.

As with the flocking experiment, the opinion dynamics
experiment also achieves a low loss. The outputs from run-
ning the reference and learned behaviours are compared in
figure 2. These plots show how the opinions of each agent
change over the course of a model run. The output of the
learned behaviour is almost identical to the reference model.
Listing 2 shows the code for the best learned opinion dy-
namics behaviour, which has been manually simplified in
the same manner as listing 1.

Our results clearly show how PS and GP can be used
beyond model calibration to learn full symbolic representa-
tions of core model logic, by only providing reference data
and without encoding previous domain knowledge.

Despite employing only a single trajectory of the refer-
ence model in both cases the resulting models were able to
generate identical macro behaviours. More importantly, we
have also shown that the evolved solutions generalise very
well and are highly interpretable. This improves over exist-
ing work in this area by learning models from scratch (start-
ing from empty behaviours) and employing a generic and
flexible DSL. This level of accountability offers a huge ad-
vantage over most deep learning (DL) techniques which suf-
fer from opacity, opening the door to applications that go
beyond modelling such as inverse generative social science
in which the synthetic model is employed to explain and il-
luminate the phenomenon being modelled.

The next natural step we are aiming for is to apply our
approach to real-world observed data. Perhaps this could
provide new insights into the underlying dynamics of bird
flocking behaviour, or any other modelling domain this was
applied to, due to the increased flexibility and reduced re-
liance on human domain priors.
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