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Introduction. A central challenge in biological, com-
putational and social sciences is to understand the evolu-
tion of cooperation within populations of self-regarding in-
dividuals and mechanisms that promote it (Perc et al., 2017;
Yang et al., 2018; Han, 2013). To this extent, various
mechanisms have been revealed and studied using methods
from evolutionary game theory, statistical physics and agent-
based modelling and simulations (Maynard-Smith, 1982;
Hofbauer and Sigmund, 1998; Perc et al., 2017). They in-
clude both endogenous and exogenous mechanisms such as
kin and group selection, direct and indirect reciprocities,
spatial networks (Nowak, 2006b), reward and punishment
(Sigmund et al., 2001), and pre-commitments (Han et al.,
2015). Institutional (pro-social) incentives, both positive
and negative, are one of the most important ones (Sigmund
et al., 2001; Van Lange et al., 2014). In institutional incen-
tives, an external decision maker (e.g. institutions such as
the United Nations and the European Union) who has a bud-
get to interfere in the population in order to achieve a desir-
able outcome, for instance to ensure a desired level of co-
operation. Providing incentives for promoting cooperation
is costly and it is important to optimize the cost while en-
suring a sufficient level of cooperation (Ostrom, 1990; Chen
et al., 2015; Perret et al., 2019). In the literature, evolution
of populations can be studied using either a deterministic
approach, which utilizes the continuous replicator dynam-
ics assuming infinite populations, or a stochastic approach,
which employs Markov chain for modelling finite popula-
tions. For infinite populations, Wang et al. (2019) has re-
cently exploited optimal control theory to provide an ana-
lytical solution for cost optimization of institutional incen-
tives. This work therefore does not take into account vari-
ous stochastic effects of evolutionary dynamics such as mu-
tation and those resulting from behavioural update (Nowak
et al., 2004). This might be problematic since undesired be-
haviours can reoccur over time, via mutation or when incen-
tives were not strong or effective enough in the past. More-
over, a key factor in behavioural update, the intensity of se-
lection (Sigmund, 2010)—which determines how strongly
an individual bases her decision to copy another individual’s

strategy on fitness difference and is absent in the continu-
ous approach—might influence the incentivisation strategy
and its cost efficiency as well. For finite populations, so far
this problem has been investigated primarily based on agent-
based and numerical simulations (Sasaki et al., 2012; Han
and Tran-Thanh, 2018; Cimpeanu et al., 2019). In this ex-
tended abstract, starting from a finite population framework
in (Han and Tran-Thanh, 2018), we summarize our recent
work Duong and Han (2021) that provides a rigorous anal-
ysis, supported by numerical simulations, for this problem
and discuss open problems in this emerging research direc-
tion.

Models and Methods. We consider a well-mixed, finite
population of N self-regarding individuals or players, who
interact with each other using one of the following coop-
eration dilemmas, namely the Donation Game (DG) and the
Public Goods Game (PGG). We adopt here the finite popula-
tion dynamics with the Fermi strategy update rule (Traulsen
et al., 2006), stating that a player A with fitness fA adopts
the strategy of another player B with fitness fB with a prob-
ability given by, PA,B =

(
1 + e−β(fB−fA)

)−1
, where β

represents the intensity of selection. To reward a coopera-
tor (resp., punish a defector), the institution has to pay (fine)
an amount θ (resp., θ) so that the cooperator’s (defector’s)
payoff increases (decreases) by θ. The population dynamics
are modelled using an absorbing Markov chain consisting
of (N + 1) states, {S0, ..., SN}, where Si represents a pop-
ulation with i C players. S0 and SN are absorbing states.
Let U = {uij}N−1

i,j=1 denote the transition matrix between
the N − 1 transient states, {S1, ..., SN−1}. The transition
probabilities can be defined as follows, for 1 ≤ i ≤ N − 1:

ui,i±j = 0 for all j ≥ 2,

ui,i±1 =
N − i
N

i

N

(
1 + e∓β[ΠC(i)−ΠD(i)+θ]

)−1

,

ui,i = 1− ui,i+1 − ui,i−1,

where ΠC(i) and ΠD(i) represent the average payoffs of
a C and D player, respectively, in a population with i C
players and (N − i) D players. In the DG and the PGG,
ΠC(i) − ΠD(i) is always a negative constant, which is de-
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Figure 1: The expected total cost of investment E for reward and punishment, for varying θ and different values of β. Donation
game: b = 2, c = 1; N = 50. When θ < −δ, punishment is more costly than reward, which is reversed when θ ≥ −δ.

noted by δ < 0. The entries nij of the so-called fundamen-
tal matrix N = (nij)

N−1
i,j=1 = (I − U)−1 of the absorbing

Markov chain gives the expected number of times the popu-
lation is in the state Sj if it is started in the transient state Si
(Kemeny and Snell, 1976). As a mutant can randomly occur
either at S0 or SN , the expected number of visits at state Si
is: 1

2 (n1i + nN−1,i). The frequency of cooperation is given
by ρD,C

ρD,C+ρC,D
,where ρC,D (resp. ρD,C) is the fixation prob-

abilities of a C (respectively, D) player in a (homogeneous)
population of D (respectively, C) players. Hence, this fre-
quency of cooperation can be maximised by maximising

max
θ

(ρD,C/ρC,D) = max
θ
eβ(N−1)(δ+θ),

where the equality is obtained by simplifying the ratio
ρD,C/ρC,D following an established procedure (Nowak,
2006a). More generally, assuming that we desire to ob-
tain at least an ω ∈ [0, 1] fraction of cooperation, i.e.

ρD,C

ρD,C+ρC,D
≥ ω, then θ needs to satisfy the following lower

bound (Han and Tran-Thanh, 2018)

θ ≥ θ0 =
1

(N − 1)β
log

(
ω

1− ω

)
− δ.

Optimization problems. The expected total cost of inter-
ference for institutional reward and institutional punishment
are respectively

Er(θ) =
θ

2

N−1∑
i=1

(n1i + nN−1,i)i,

Ep(θ) =
θ

2

N−1∑
i=1

(n1i + nN−1,i)(N − i).

In summary, we obtain the following cost-optimization
problems of institutional incentives in stochastic finite pop-
ulations: minθ≥θ0 E(θ), where E is either Er or Ep.

Main results. The main results of Duong and Han (2021)
can be summarized as follows.
Theorem 1.

1. (infinite population limit)

lim
N→+∞

E(θ)
N2θ

2 (lnN + γ)
=

{
1 + e−β|θ−c| for DG,
1 + e−β|θ−c|eβc

r
n for PGG,

where γ = 0.5772... is the Euler–Mascheroni constant.

2. (weak selection limits) lim
β→0

E(θ) = N2θHN , where

HN =
∑N−1
i=1

1
i is the harmonic number.

3. (strong selection limit of Er, Ep is similar)

lim
β→+∞

Er(θ) =


N2

2 θ
(

1
N−1 +HN

)
for θ < −δ,

N2θHN for θ = −δ,
N2

2 θ
(

1 +HN ) for θ > −δ.

4. There exists a threshold value β∗ such that θ 7→ E(θ)
is non-decreasing for all β ≤ β∗ and is non-monotonic
when β > β∗. As a consequence, for β ≤ β∗

min
θ≥θ0

E(θ) = E(θ0).

For β > β∗ and N is not too large (N ≤ N0 for some
N0), there exist θ1 < θ2 such that, E(θ) is increasing
when θ < θ1, decreasing when θ1 < θ < θ2 and increas-
ing when θ > θ2. Thus, for N ≤ N0,

min
θ≥θ0

E(θ) = min{E(θ0), E(θ2)}.

5. Er(θ) < Ep(θ) for θ < −δ, Er(θ) = Ep(θ) for θ =
−δ and Er(θ) > Ep(θ) for θ > −δ.

Figure 1 demonstrates the behaviour of the cost function
in different regimes of intensities of selection, when institu-
tional reward is more or less costly than institutional punish-
ment, as well as the phase transitions that occur when β is
sufficiently large.

Summary and Outlook. We have summarized our re-
cent theoretical analysis of the problem of optimizing cost
of institutional incentives (for both reward and punishment)
while guaranteeing a minimum amount of cooperation, in
stochastic finite populations. In this context, institutional
approaches have been widely adopted to study biological
and artificial life systems (Andras et al., 2018; Jones et al.,
2013; Smaldino and Lubell, 2014; Perret et al., 2019; An-
dras, 2020). Our analysis provides new, fundamental in-
sights into a cost-efficient design of institutions that promote
pro-social behaviours.
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