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Abstract 

Although cognitive complexity has been usually related to brain 
size or number of neurons, they are neither necessary nor 
sufficient conditions, since there are many species in nature 
showing that even with simple brains, they can exhibit 
unexpected levels of behavioral complexity. More recent 
approaches to cognitive science, such as enactive cognition, 
have been investigating social interaction in itself as part of an 
individual’s cognition. Recently, Candadai et al. (2019) have 
demonstrated through a minimal model that social interaction 
increases agents’ neural complexity and revealed that this 
cannot be achieved in isolation. In this paper, we first replicate 
the Candadai et al. (2019) model to analyze the state-space of 
the autonomous continuous-time recurrent neural networks of 
the interacting agents. Our results show that in terms of 
complexity, it is as simple as it can be, a single fixed-point 
attractor. Then, we proceed to ask whether, after loosening up 
the parameter constraints of this model, we will find more 
complexity in the state-space as there will be a broader variety 
of values in the parameters of neural controllers encoded in the 
genotype of each agent. Surprisingly, the state-space of this 
second approach leads to the same results, a single fixed-point 
attractor. Our findings, then, support the idea that cognitive 
complexity is mainly driven by the dynamics of social 
interaction rather than internal complexity.  

Introduction 

Traditionally, cognitive complexity has often been associated 
with brain size or number of neurons. The social brain 
hypothesis supports these ideas by assuming that socially 
living species, such as human and nonhuman primates, should 
have enlarged brain sizes as a result of the demands of social 
life, in comparison to the more isolated ones. Briefly, this 
hypothesis is based on the correlation between social 
complexity and brain/group sizes (Dunbar, 1998; Barret et al., 
2007). In contrast to these ideas, Barret et al. (2007) suggested 
that cognitive complexity might emerge from the interaction 
of brain, body and environment, and it is not simply 
attributable to the level of internal complexity itself. 
Furthermore, Barret (2011) argued that there are many of the 
so-called simpler animals with small brains that exhibit 
striking levels of behavioral complexity, such as paper wasps, 
which have the ability to recognize facial traits and use it to 
preserve social order in their hives and ants, which are able to 

find the shortest path to food sources through self-organizing 
processes. Therefore, these examples reinforce the idea that 
the complexity of behavioral activity is not merely a 
consequence of internal complexity and they highlight the 
importance of social interaction. 
 From an enactive cognition approach, social interaction is 
defined as a complex phenomenon involving engagement of 
at least two agents in a complex co-regulated pattern that 
enables social cognition (De Jaegher et al., 2010).  In the last 
decades, there have been increasing efforts in investigating 
social interaction by using agent-based models to provide 
proof of concepts in order to make conceptual advances. 
Some of these models known as “minimal models” have been 
inspired by William Grey Walter’s “turtle” mobile robots 
(Walter, 1950). These robots, which had only touch and light 
sensors and a very simple control architecture, performed 
surprising complex patterns of behaviors when interacting. On 
the basis of these findings, Di Paolo (2000) developed a 
simulation model of acoustically coupled embodied agents to 
study social coordination. In his model, these agents showed 
interesting behaviors, such as turn-taking and organized 
movement that emerged through their interaction via an 
acoustic medium. On the other hand, Froese et al. (2013a) 
created a minimal model of two acoustically coupled agents 
and demonstrated that in interactive scenario the neural 
dynamics of these agents has formal properties that could not 
be generated in isolation. Similar minimal approaches have 
been shown also to be very productive in studies of real social 
interaction in humans, e.g. perceptual crossing experiments 
(Froese, 2018).  
 Based on those previous works and following an 
evolutionary robotics methodology, Candadai et al. (2019) 
demonstrated that social interaction increases the complexity 
of an agent’s neural activity and revealed that this cannot be 
achieved in isolation. They performed experiments on agent-
based modeling using pairs of acoustically coupled embodied 
agents in an empty 2-dimensional environment, as shown in 
Figure 1.  
 
 
 
 
Figure 1: Illustration of a pair of acoustically coupled 
embodied agents in Candadai et al. (2019) model.   



 These experiments consisted of measuring neural entropy 
as an index of internal complexity. This was motivated by its 
interpretability, computational tractability and because of 
previous studies which have related higher levels of neural 
entropy with enhanced cognitive performance, e.g. enhanced 
generalization in motor learning tasks (Dotov and Froese, 
2018). There were two different scenarios: by artificially 
evolving interacting pairs of embodied agents (maximizing 
interaction entropy) and by artificially evolving isolated 
agents in the environment (maximizing isolation entropy). 
Moreover, they measured the interaction entropy of an agent 
in the presence of a “ghost” partner, which was playing back 
pre-recorded behavior of previous trials, thus, they were not 
able to mutually interact with each other. As a result, this led 
to a loss of internal complexity of the “live” agent and proved 
that active interdependent interaction increases their neural 
complexity.  
 We found the Candadai et al. (2019) model very insightful, 
however, they did not provide a dynamical systems analysis to 
get clarity on the internal complexity, consequently, we got 
the next open questions: How complex are the internal state 
spaces of these agents? And how is that internal complexity 
related to their underlying genetic complexity, and how does 
it evolve over generations? Therefore, in this study we aim to 
achieve three novel contributions: 
 

1. Loosening up genetic constraints: By proposing a 
novel approach that we call “layer-based 
unconstrained”, in order to see the effects of the 
loosened parameter constraints and allow a broader 
diversity in the genotypes of the agents. 
 

2. State-space analysis: By performing the dynamical 
systems analysis of the autonomous continuous-time 
recurrent neural network (CTRNN) of each best pair 
of agents for both approaches (layer-based 
constrained (original configuration) and layer-based 
unconstrained (proposed configuration)) in order to 
analyze their internal complexity. 
 

3. Evolutionary analysis of neural entropy: By 
observing how the normalized neural entropy of the 
best pair of agents is evolving through time in two 
different scenarios: interactive and under “ghost” 
condition. 
 

 Thus, these goals share the following underlying reason for 
being studied: To demonstrate that social interaction matters 
and makes a difference in the complexity of neural dynamics.  

Methods 

We started working on our model as a replication of the 
Candadai et al. (2019) model. We choose to maximize only 
interaction entropy. The fitness function for the evolutionary 
search (i.e. neural entropy, which has been used as an 
indication of cognitive complexity) does not explicitly 
optimize social interaction nor does it optimize any specific 
task. The implementation details of this model and our 
modifications are presented as follows: 
 

A. Body 
The body of each embodied agent is designed as circular with 
a radius, R, of 4 units, which has two acoustic sensors 
symmetrically positioned at an angle of 45 degrees to the 
central axis (i.e. positioned at 45 and 315 degrees, 
respectively); an acoustic emitter placed on the center of the 
body, therefore, equidistant to its own sensors; and two 
motors driving wheels placed on opposite sides of the agent 
that enable movement in a 2-dimensional environment. This 
design was initially inspired by Di Paolo’s acoustically 
coupled agents (Di Paolo, 2000).  The strength of the emitted 
signal experiences linear loss with distance. It will be 
maximum and equal to that of the emitted strength at a 
distance D = 2R, between the center of the agents and linearly 
decays with increasing distance. Furthermore, the “self-
shadowing” mechanism, i.e. experienced attenuation when the 
signal travels within the embodied agent, is modeled as a 
scaling factor over the sensory inputs in a range from 0.1 to 1. 
The equations for calculating the shielded distance, Dsh, that 
the signal passes through the body can be found in the 
Supplementary Material of Candadai et al. (2019). Then, the 
process of obtaining the sensory input for each sensor consists 
in first calculating it by applying the inverse square law 
without any “self-shadowing” attenuation, based on the 
distance between the sensor and the source, and then 
multiplying by the “self-shadowing” attenuating factor 
linearly mapped from 1 (when Dsh = 0) to 0.1 (when Dsh = 
2R). 
 
B. Environment 
The simulated environment is a 2-dimensional unlimited 
arena. Collisions are modeled as point elastic, i.e. no changes 
in their angular velocity (no friction between bodies) and 
conserving the momentum of the whole system by having 
zero net effect on their velocity vectors. This is achieved by 
exchanging the velocity vectors of the embodied agents, so 
they simply bounce off each other without loss of energy. 
Modeling energy transfer is considered for future work.  
 
C. Neural architecture  
The neural architecture of each of the embodied agents is 
composed of three layers, we called them as follows: sensor 
layer, neuron layer and actuator layer.  
 
 1. Sensor layer: The sensor layer consists in two sensor 
nodes with a sigmoidal activation function. Their output is 
given by: 

(3)  
 

where                              is the sigmoidal activation function, 
gs is the sensory gain, Is is the sensory input and θs is the bias. 
 
 2. Neuron layer: The neuron layer is modeled as a 
continuous-time recurrent neural network (CTRNN) (Beer, 
1995), consisting in two fully recurrently connected neurons, 
this corresponds to a 2-dimensional dynamical system. The 
activity in each neuron is governed by the following state 
equation: 
 

(4) 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where dyi/dt refers to the rate of change of internal state yi of 
neuron i based on a time constant τi. This rate of change 
depends on three values: the current state, the weighted sum 
of outputs from the two neurons (N = 2) in the network and 
the total external input. The input from other neuron is 
calculated by weighting their output with weights from j to i, 
i.e. wij.  The output of each neuron based on its internal state is 
given by σ(yj + θj) where θj refers to a bias term for that 
neuron.  Lastly, the state is influenced as well by the total  
external input received by the neuron, given by the weighted 
sum of the sensory input with weights wis from sensor node s              
to neuron i and os being the sensory output from two sensors. 
 
 3. Actuator layer: The neurons feed into the actuator layer, 
where the input to each actuator node is a weighted sum of the 
outputs of the neuron. The actuator layer contains three 
actuator nodes, two corresponding to the left and right motors 
and one corresponding to the acoustic signal emitter. All of 
them are sigmoidal units with a gain and bias such that the 
output of actuator node i, mi, is given by: 
 
 

(5) 
 
 
where on is the output of the neuron, that is weighted by wni 
and θi is the bias term, and gm is their gain. 
 Note that locomotion is managed by the effective control of 
the two motors. Net linear velocity is given by the average of 
their corresponding outputs and angular velocity which rotates 
the agent is given by their difference divided by the radius of 
the agent. 
 
 D. Neural entropy  
During the entire course of behavior, i.e. 4 trials, the neural 
activity of each of the agents is recorded. Then, neural entropy 
in the 2-dimensional time series from the outputs of the two 
neurons (neuron layer) is measured as the neural complexity. 
The outputs of the two neurons are bounded in the range [0,1], 
as they are obtained from a sigmoid function. The output 
space is binned with 100 bins along each dimension, i.e. each 
axis  corresponds  to  the  outputs  of  the  first  and the second  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
neuron, respectively, each axis goes from 0 to 1 and is divided 
into 100 bins, totaling 10,000 bins. Thus, a 2-dimensional 
histogram is created at the end of the 4 trials with all the 
recorded binning data points. The entropy H of the neural time 
series is given by: 

 
 

(6) 
 
where the probability of the neural activity in a particular bin 
[i,j], pij, is given by the number of data points in that bin 
divided by the total number of data points. The neural entropy 
then is normalized in the range [0,1] through dividing by the 
maximum possible entropy, log(100 * 100), which is obtained 
when all bins are uniformly populated, therefore, a uniform 
distribution over the 2-dimensional histogram is achieved. 
Hence, normalized neural entropy is given by: 
 

(7) 
 
E. Evolutionary algorithm 
A real-valued genetic algorithm was used as an optimization 
technique for the parameters of the neural controllers in order 
to maximize the agents’ neural entropy. In contrast to the 
Candadai et al. (2019) model, here we followed two different 
approaches for the evolutionary optimization, namely, layer-
based constrained and layer-based unconstrained, as shown in 
Figure 2. Each of these approaches is described as follows: 
 1. Layer-based constrained: This approach followed the 
original configuration in the Candadai et al. (2019) model, 
where each agent had 20 parameters, i.e. for N agents, the 
genotype contained 20N parameters. Here, both sensor nodes 
shared same gain and bias, both neurons shared same time- 
constant and bias, and the three actuator nodes shared same 
gain and bias. Therefore, in each of the three layers (sensor 
layer, neuron layer and actuator layer) the parameters were 
limited to have common values. 
 2. Layer-based unconstrained: This is the proposed 
approach in order to loosen up the identified parameter 
constraints to allow more diversity in the genotypes and see 
the possible effects in the subsequently analysis. Here, in each 
of the three layers (sensor layer, neuron layer and actuator 

Figure 2: Two approaches based on layer parameter constraints of the neural controllers for the evolutionary search. (A) Layer-
based constrained. This is the original configuration in the Candadai et al. (2019) model, where for N agents, the genotype 
contained 20N parameters. In this approach, the two acoustic sensor nodes have common gain and bias, the two neurons have 
common time-constant and bias, and the three actuator nodes (two motors and an acoustic emitter) have common gain and bias.    
(B) Layer-based unconstrained. This is the proposed configuration in order to loosen up the original parameter constraints and 
allow more diversity in the genotype, where for N agents, the genotype contained 28N parameters. In this approach, sensor nodes, 
neurons and actuator nodes do not have common parameters.  



layer) there were no common parameter values. Thus, each 
agent had 28 parameters, i.e. for N agents, the genotype 
contained 28N parameters.  
 In both approaches, each of the parameters were initially 
encoded in the range [-1,1]. When performing the trials to 
evaluate the performance, these parameters were scaled in 
different ranges in order to build the agents.  For the sensor 
layer and actuator layer, their gains were scaled in the range 
[1,5] and their biases were scaled in the range [-3,3]. For the 
neuron layer, its time-constants were set in the range [1,2] and 
their biases were set in the range [-3,3]. Additionally, all 
weights from the three layers, were scaled in the range [-8,8]. 
All these parameter ranges were the same as those in the 
Candadai et al. (2019) model.  
 We performed 10 independent runs for each of the 
approaches (layer-based constrained and layer-based 
unconstrained), totaling 20 runs. Each of the runs started with 
a random population of 96 solutions, where each of them 
encoded the parameters for two agents in the interactive 
scenario and were evolved for up to 2000 generations.  
 In each generation, the agents built from the genotype were 
evaluated over 4 independent trials. Each trial lasted 200 units 
of time at a step size of 0.1 At the beginning of the trials, the 
agents were placed at 20 units from each other but varying 
their relative angle as  for each trial. During 
the 4 trials, the neural activity of each agent was recorded, and 
at the end, the normalized neural entropy was calculated, and 
fitness was set as the average normalized neural entropy of the 
two agents. 
 After the performance evaluation, an elite population of the 
top 4% solutions was kept as is, and the remainder of the 
solutions for a new population was created by mutating and, 
then, crossing over this elite fraction. Mutation was applied by 
adding a zero-mean Gaussian mutation noise with variance 
0.1 to the solutions, while, crossover involved that each 
parameter between a pair of solutions was swapped with a 
probability of 0.1.  
  
F. Analysis under “ghost” condition 
In order to delineate the role played by interdependent 
interaction on internal complexity, the best pair of agents in 
each of the selected generations (0, 1, 2, 3, 4, 5, 10, 50, 100, 
500, 1000, 2000) were tested under a “ghost” condition. Blue 
agent was referred as the “ghost” agent and red agent was 
referred as the “live” agent. The “ghost” agent was replaying 
pre-recorded behavior from previous trials and the “live” 
agent was allowed to interact with it. The active agent started 
at a different random initial angle from “ghost” agent, in order 
to not repeat its behavior from those trials, while keeping the 
initial distance the same (20 units). As the evolutionary fitness 
evaluation, 4 trials were conducted, and the normalized neural 
entropy of the active agent was measured based on its 
behavior in the presence of a “ghost” partner.  
 
G. Dynamical Systems Analysis 
In order to analyze the complexity of the state-spaces for the 
best pair of agents in each approach, we performed the 
dynamical systems analysis of the autonomous continuous- 
time recurrent neural network (CTRNN) using Dynamica 
(version 1.0.9), a Mathematica package for the analysis of 
smooth dynamical systems, developed by Randall D. Beer.  

Results 

This section presents the results obtained from the best pair of 
agents in each of the approaches, layer-based constrained and 
layer-based unconstrained. These results are analyzed in detail 
in the Discussion and Conclusions section.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Dynamical systems analysis of the autonomous 
continuous-time recurrent neural network for the best pair of 
agents in the layer-based constrained (A.1 and B.1) and layer-
based unconstrained (A.2 and B.2) approaches. The state- 
spaces of the dynamical systems are showing representative 
flow structure of a region of the activation space of the 
CTRNN. It can be seen that for red (A.1 and A.2) and blue 
(B.1 and B.2) agents there is a single stable fixed-point 
attractor (blue dot), the position of this point and its structure 
of attraction depend on the input values. In this case, the input 
values were those obtained at the end of the corresponding 
simulation (Generation 2000, Trial 1, best run in each case). 
The coordinates of the attractors are: (1.30753, -0.768629) in 
A.1, (0.2131, 0.6247) in B.1, (−0.42956,−0.96966) in A.2 and 
(−2.9214, 0.6546) in B.2, where y1-axis represents the states 
of neuron 1 and y2-axis represents the states of neuron 2. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: (A.1 and A.2) Neural activity of the two neurons of 
red agent (A.1) and blue agent (A.2) in interactive scenario 
(representative trial from the best pair of agents in layer-based 
unconstrained approach). As it can be seen, when both agents 
are interacting the neural activity shows chaotic aperiodic 
activity that cannot be produced by 2-dimensional decoupled 
CTRNNs, as demonstrated in Figure 4. (B.1) Neural activity 
of the two neurons of red agent under “ghost” condition. It 
can be observed that when red agent is in the presence of a 
“ghost” partner, the neural activity demonstrates remarkably 
lower complexity than the neural activity of the same agent in 
interactive scenario (A.1). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Discussion and Conclusions 

Our results in Figure 3 have shown that either in the layer-
based constrained or the layer-based unconstrained 
approaches, we got a single fixed-point attractor in the state-
space analysis of the autonomous continuous-time recurrent 
neural networks of each agent, it follows that, what insights 
can we get from these findings? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Previous minimal models of adaptive behavior in different 
task domains that have followed evolutionary robotics 
methodology have gotten similar results, i.e. only single fixed-
point attractors. For instance, Campos and Froese (2017) 
developed a minimal model on referential communication 
based on the waggle dance of the bee to set the task for a 
receiver and a sender, then, by performing dynamical system 

Figure 5:  Results of behavioral patterns in different interaction conditions (in all images, earlier motion is darker than later 
motion to show directionality). (A.1 and A.2) Behavioral patterns for layer-based constrained approach. (A.1) Red and blue 
agents interacting in spiraling pairwise movement. (A.2) Red agent under “ghost” condition. In the presence of a “ghost” partner, 
the red agent moves in simple loops, therefore, its behavioral complexity is significantly reduced. (B.1 and B.2) Behavioral 
patterns for layer-based unconstrained approach. (B.1) Red and blue agents interacting in spiraling nested loops movement, where 
the red agent moves in smaller loops and the blue agent moves in bigger loops. (B.2) Red agent under “ghost” condition. In the 
presence of a “ghost” partner, the red agent moves in simple loops, therefore, its behavioral complexity is significantly reduced.  
 

Figure 6:  Normalized neural entropy of best pair of agents in each selected generation - best run (interactive vs under “ghost” 
condition scenarios) (A) Layer-based constrained approach. (B) Layer-based unconstrained approach. For both approaches it can 
be observed that when agents are able to mutually interact with each other they exhibit higher levels of normalized neural entropy, 
while under “ghost” condition, the “live” agent’s normalized neural entropy drops, therefore, it suffers a loss in internal 
complexity. The highest entropy scores of red agent under “ghost” condition are achieved during the initial generations until 
generation 50 (for A) and generation 500 (for B), after that they start to drop until generation 2000.  

A.2 B.2 

B.1 A.1 

A B 



analysis, they found only one fixed-point attractor that 
changed to different positions for each role, instead of having 
two different attractors, therefore, being an example of action 
switching models (Agmon and Beer, 2014). Furthermore, in 
social interaction minimal models, these results have been 
consistent as well, even when increasing the number of 
neurons (Froese and Fuchs, 2012) or having structurally 
identical pair of agents interacting, i.e. clones (Froese et al., 
2013a). What is interesting to remark here is that in our 
findings the state-spaces also showed complementary roles of 
the CTRNN for red and blue agents, however, there was never 
specified a task to achieve, as described before for other 
previous models. This is one of the most insightful ideas that 
we got by going deeper in the Candadai et al. (2019) model: 
by maximizing the neural entropy in the evolutionary 
optimization, we were not expecting a particular behavior 
from the agents, however, in both approaches the strategy that 
the agents found was the same: by mutually interacting. At 
this point, it is worth recalling that elevated levels of neural 
entropy have been associated with improved cognitive 
performance. Therefore, if those elevated levels of neural 
entropy in the agents were achieved by mutually interacting, 
as shown in Figure 6, this suggests that social interaction 
might play a relevant role for cognition. Thus, these ideas 
might reject the classical view of cognitive science where 
cognitive complexity relies only on internal complexity.  
 Following the previous points, now we can understand the 
reason why our results showed only single fixed-point 
attractors. According to Zarco and Froese (2018), in “world-
involving” scenarios obtained by evolutionary robotics 
methodology, the evolutionary search leads to a CTRNN 
structure that makes the agent to be interactively guided by 
the world. When an agent is evolved to display adaptive 
behavior, its CTRNN controllers usually exhibit a single 
attractor, however, still able of fruitful dynamics. Then, from 
the dynamical perspective, we can conclude that our agents in 
interaction became the whole brain-body-environment-body-
brain system (Froese et al., 2013b) demonstrating chaotic 
aperiodic neural activity as shown in Figure 4 (A.1 and A.2), 
which in principle should require 3-dimensional decoupled 
CTRNNs. Thus, when an agent was in the presence of a 
“ghost” partner, this system was incomplete, generating 
consequently, a loss in neural and behavioral complexity of 
the “live” agent as shown in Figures 4 (B.1), 5 (A.2 and B.2) 
and 6. Finally, we propose thinking about how human 
cognition is enriched in real “world-involving” scenarios 
given that our daily life is full of social interactions. 
 In future work we will extend these results by 
implementing 3-neurons model and maximizing transfer 
entropy. 
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