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Abstract

Every organisation seeks to narrow the gap between the po-
tential and the actual value of its collective knowledge for
‘correct’ or ‘optimal’ decision-making capability. This prob-
lem has deep historical roots in social choice theory, organi-
sational theory and political science, but recent and rapid de-
velopments in social networks, big data and artificial intelli-
gence have only amplified and exacerbated the scale and com-
plexity of knowledge management. This paper addresses the
magnified problem from a psychological perspective, using a
model called RTSI (Regulatory Theory of Social Influence).
This focuses on how targets (of information) seek sources to
be influenced by, rather than the alternative traditional model,
of sources influencing targets. Using agent-based modelling,
a series of experiments shows how a group of agents using
RTSI can pool their collective knowledge to becomes a multi-
dimensional distributed information processing unit that can
track a ‘true’ signal or a ‘community’ signal.

Introduction

Every organisation seeks to narrow the gap between the po-
tential and the actual value of its collective knowledge for
‘correct’ or ‘optimal’ decision-making capability. The gap is
perhaps most widely known through the corporate lament “If
only HP [Hewlett-Packard] knew what HP knows”, recog-
nising the difference between the organisation’s actual per-
formance with fragmented knowledge and the organisation’s
potential performance if that knowledge could be synthe-
sised (Sieloff, 1999).

This knowledge gap problem has deep historical roots in
political science (Ober, 2008), social choice theory (List and
Goodin, 2001), and organisational theory (Davenport and
Prusak, 1998). However, recent and rapid developments
in social networks, big data and artificial intelligence have
only amplified and exacerbated the scale and complexity of
knowledge management. For example, misinformation and
confirmation bias have caused sub-optimal decision-making
on a global scale, adversely affecting public health deci-
sions (Hussain et al., 2019); participatory sensing applica-
tions have resulted in an asymmetry of benefit between the
data generators and the data aggregators (Macbeth and Pitt,
2015); while biased datasets have been the basis for training

machine learning algorithms that simply reproduce that bias,
for example in employment and policing (Asaro, 2019).

This paper addresses the magnified knowledge gap prob-
lem from a psychological perspective. Since influence is so
important in human behaviour in social interactions, we ex-
amine a new model called RTSI (Regulatory Theory of So-
cial Influence) (Nowak et al., 2020). This model focuses
on how targets (of information) seek sources to be influ-
enced by, rather than the alternative traditional model, of
sources influencing targets. A target’s decision-making is
based firstly by a competence-based decision (do-it-yourself
or delegate to others), and, if delegating, a trust-based deci-
sion. Experiments with a multi-agent simulator shows that a
group of agents using this model of social influence the col-
lective can become a multi-dimensional distributed informa-
tion processing unit that can accurately track either the ‘true’
signal, or the ‘community’ signal.

The argument is developed as follows. The next section
expands on the multi-disciplinary background to this work,
including a more detailed description of RTSI. We introduce
a test environment and objectives, and specify algorithms
for software agents implementing a circumscribed version
RTSI. A series of experiments explores the behaviour of
RTSI in the test environment. We summarise and conclude
that agent-based modelling can be used to represent a the-
ory of human psychology and shed some interesting light on
knowledge management in organisations.

Social Influence

Influence plays a key role in human behaviour in social in-
teractions, and such it has attracted considerable attention
in the literature. In his classic work, Allport (1937) defined
social influence almost as broadly as the field of social psy-
chology, as a change in thoughts, feelings and behaviour re-
sulting from real or imagined presence of others. Research
in social psychology has concentrated on social influence
described from the perspective of the agent of influence (i.e.
the source) whose overarching concern is how to alter the
opinions, decisions, or courses of action of the intended tar-
get of the influence. In this vein influence can take many



forms such as conformity (Asch, 1956), obedience (Mil-
gram, 1963), persuasion (Petty and Cacioppo, 1986), com-
pliance (Cialdini, 2016) and control. The rules of influence
specify the principles by which the source can influence
thinking and decisions of the target and overcame the pas-
sivity or resistance of the target. Implicit in this perspective
is the assumption that the source’s agenda is not shared by
the target and is beneficial to the source. In this perspective
social influence is close to power and manipulation.

Social influence, however, may be beneficial to the tar-
get in such processes as, for example, seeking informa-
tion (Baldwin and Hunt, 2002) and advice (Dyer and Ross,
2008). The observation that influence may serve the inter-
ests of the target of influence, led to the development of the
Regulatory Theory of Social Influence (RTSI) (Nowak et al.,
2020) that assumes that individuals often desire to be influ-
enced and actively search for influence. In particular, from
the target’s perspective, social influence is tantamount to the
delegation of information gathering and processing to oth-
ers. The target chooses the topic of influence, the sources of
influence and the form of influence. The goal of seeking in-
fluence is the formation of a judgment or reaching a decision
on an issue. Delegating information processing to others is
functional; it saves the processing resource and processing
time and may improve the quality of the decision or judg-
ment. It is, however, risky as one may be misled, exploited,
or receive information and advice of poor quality. The de-
mand for efficiency pushes individuals toward delegating,
risk avoidance induces individuals to gather and process the
information themselves.

The rules of RTSI describe how individuals can solve
the dilemma. In short individuals tend to devote their own
processing resources to matters that are associated with the
highest risk while delegating to others judgments and deci-
sions associated with a lower risk. At intermediate levels
of risk they use a mixed strategy, delegating only part of
decision-informing information processing, while reserving
final decision-making for themselves. If they are unable to
reach a decision by themselves, individuals can even dele-
gate decision-making, while checking the advice.

In this process trust is essential. Trust toward the other
is the most important variable controlling influence seek-
ing. Individuals tend seek information and advice from the
trusted others, if this is not possible they gather and process
the information themselves. Information from the trusted
others is also weighted the most. Trust is a dynamical vari-
able which reacts to the quality of information received from
others. Individuals increase the trust toward those who give
them true and accurate information and they decrease trust
toward those who give them inaccurate information. Indi-
viduals also take into account their own expertise: the lower
it is, the more likely they are to delegate information pro-
cessing to others. Importance of the decision, own knowl-
edge and coherence of information are the other variables in
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Figure 1: Variation of ambient signal with location and time.

social influence. The joint influence of these variables de-
cides when and how individuals delegate information gath-
ering and processing to others while minimizing the associ-
ated risk. RTSI proposes that social influence initiated by
the target turns social groups into optimizing distributed in-
formation processing systems.

Test Environment and Objectives

This section defines a test environment which exhibits fea-
tures of uncertainty, incompleteness and variation, in order
to test the essential properties of RTSI: social networking,
self-organisation and distributed information processing.

Test Environment

To explore a computational model of RTSI, we set up a
test environment which consists of a grid, of variable size
[1..mazX,1..mazY], with mazX and mazY being speci-
fied as experimental parameters.

There is a signal, p with a value that varies with time from
a starting value (called the base signal). The ambient value
of the signal is given by combining a random number of
sine functions (called scramblers) with a randomly gener-
ated amplitude, frequency and phase. Because adding two
sine waves produces another sine wave, a random amount
of noise is also added, with the scramblers’ parameters reset
periodically. (The intention being that, while not impossible,
it should be relatively complex (computationally) to learn
the function: the sparsity of data relative to the size of search
space means that the rate of change of an unknown num-
ber of environmental parameters is ‘sooner’ than a “learning
algorithm of corresponding complexity” could converge on
the number and values of those parameters.)

Moreover, at a random number of locations are added sig-
nal noise generators: these may amplify the signal or sup-
press the signal. The amplification/suppression of the sig-
nal at a location changes according to an inverse square law
with the distance of the location from each noise genera-
tor. The result is that the ambient signal not only varies over
time, but varies with location. This is illustrated in Figure 1,
which shows a heatmap of a grid at t = 0, and the change
of ambient signal over time from ¢ = 0 to ¢ = 720, with
recalculation of the signal variation when ¢ mod 60 = 0.



Value \ Range \
maxX , maxY N+
base signal R
ambient signal R
signal amplifiers | {((z,v),S,1)}
signal suppressors | {((z,y),S,1)}
randomisation {(A, f,9)}

Table 1: Environmental specification.

The environment € is defined by the data shown in Table 1.
The base signal is the value which, if not distorted by signal
amplifiers and suppressors, or the randomisation function,
would be the ground truth for every location. The ambient
signal is the base signal at a location (z,y) modified by the
inverse-square of the distance to each of the signal ampli-
fiers or suppressors according to its surface strength S and
intensity /. The variation of the ambient signal is computed
by the set of sine functions, each with a randomly-generated
amplitude A, frequency f and phase .

Test Objectives

Such an environment is populated with a number of agents
at random locations. Each agent has an imperfect sensor that
can read the ambient signal at its location, and can commu-
nicate with the other agents in its social network. Their aim
is to determine a common value, either by averaging individ-
ual values (the wisdom of crowds) or by exchanging signal
readings and agreeing a value. The group therefore faces
two possible situations:

e informative: collectively decide on the base signal given
feedback from the environment about the accuracy of
their ambient signals;

e conformative: collectively decide on the ‘community’
signal given only the previous collective decision(s).

Experimental Results

We have implemented a simulator for agent-based modelling
of RTSI in Qu-Prolog', called QuRTSI (pronounced “curt-
sey”). Details are omitted here but essentially agents have to
decide whether to sense the signal (do the work themselves)
or ask the most trusted agent in their social network (i.e. del-
egate the task). Asked agents can also ask, up to a maximum
hop-count of 6 (i.e. 6 degrees of separation). Agents’ sensors
are inherently unreliable, and there are three types of agent:
those that consistently over-estimate, those that consistently
under-estimate, and those that can do either.

Agent have ‘trust’ in other agents and ‘self-confidence’ in
themselves, represented by a value in [0..1]. If an agent?s
sensed signal is better than the signal of the one it asked,

"http://staff.itee.uq.edu.au/pjr/HomePages/QuPrologHome.html

then it increases its self-confidence and decreases its trust
in the other agent. It does the opposite if the asked agent’s
signal was better than its own.

Four experiments have been run to investigate:

e The effect of conformative- vs. informative-RTSI on
signal-tracking. Hypothesis: that informative-RTSI will
track the ambient signal, while conformative-RTSI will
track the wisdom-of-crowds (WoC) estimate.

e The effect of different social networks on signal-tracking.
Hypothesis: that informative-RTSI will track the ambient
signal independent of network properties.

e The emergence of expertise. Hypothesis: that low error
and high degree will be correlated with high trust.

e The trade-off between asking and sensing. Hypothesis:
that agents will ask more often.

Experiment 1: Signal Tracking

In this experiment, we investigated the difference between
informative- and conformative-RTSI with respect to the ac-
tual ambient signal, and the averaged individual estimates,
i.e. the wisdom of crowds (WoC). The simulation was run
for 720 clock ‘ticks’ with scramblers reset every 60 ticks,
| A |= 40 (approximate size of a platoon), and maximum
delegation hop-count = 6 (future experiments will investi-
gate the effect of hop-count as an independent variable).

Figure 2 show the output for a typical run with a random
network, p = 0.25. The blue line records the base signal.
The black line records the aggregated and averaged sensed
signal when each agent is sampling the signal on its own
without the RTSI option of delegating to another agent. In-
dividually, the agents are able to track the basic shape of the
ambient signal, but the inaccuracies in their sensing, the dis-
tortions introduced by the signal amplifiers and suppressors,
and population bias (in this case to over-estimate) means
that the estimated signal is diverges from the ambient sig-
nal. Hence in this case the estimated signal values are higher
than ambient, but can equally be lower.

The green line is the agents’ collective signal estimate us-
ing informative-RTSI. The agents get feedback about the
actual ambient signal, and update their self-confidence in
themselves, or in the agent that they asked, according to the
relative accuracy. As RTSI predicts, the estimate converges
relatively quickly on the base signal and tracks that closely.
An expert group emerges, with expertise on the base signal.

The red line is the agents’ collective signal estimate using
conformative-RTSI. Each agent gets feedback about the es-
timated signal from the previous round and compares their
estimate, and the asked agent’s estimate, relative to that, and
update self-confidence and trust accordingly. As RTSI pre-
dicts, the collective estimate converges on the WoC signal
and tracks that — in other words, an expert group emerges,
but they are experts in expressing the population’s opinion.
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Figure 2: Signal tracking (single example) — Blue line: am-
bient signal; green line: informative-RTSI estimate; black
line: WoC estimate; red line: conformative-RTSI estimate.

To verify the tracking of informative-RTSI against the am-
bient signal, and of conformative-RTSI against the wisdom-
of-crowds, we run the simulator 20 times with same config-
uration, and measure the overall average percentage error.
This is done for four cases: (1) Informative-RTSI vs. WoC;
(2) Informative-RTSI vs. ambient signal; (3) Conformative-
RTSI vs. ambient signal; and (4) Conformative-RTSI vs.
WoC. The results are illustrated in Figure 3.
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Figure 3: Percentage difference (20 runs). (1) Informative-
RTSI vs. WoC; (2) Informative-RTSI vs. ambient signal; (3)
Conformative-RTSI vs. ambient signal; (4) Conformative-
RTSI vs. WoC.

This shows that informative-RTSI diverges from the WoC
estimate, but tracks the base signal; while conformative-
RTSI diverges from the base signal, but tracks the WoC es-
timate instead, supporting the experimental hypothesis.

Experiment 2: Network Variation

The aim of the second experiment was to examine the effect
of different network types on informative-RTSI. We used
six different types of network: ring, all-to-all (A2A), ran-
dom network with p = 0.33 (ER.33) and p = 0.66 (ER.66),
small-world (WS) network with kx = 3,p,, = 0.25,% and

2The algorithm for generating a small-world network links each
node to kxn nearest neighbours, and then rewires each link with

scale-free (BA) network with mg = 3,m = 2.3 Each of
these were analysed with three different sets of agents, with
cardinality of | A | 20, 40, and 60. Each permutation (net-
work vs. size) was run ten times and the percentage error of
the informative-RTSI vs. the ambient signal was measured.
Otherwise the same configuration as in Experiment 1 was
used (maximum hop-count = 6, clock ticks = 720).

Note that using a pseudo-random number generator and
setting the seed explicitly, the environment and the agent
profiles were the same on each nth run in all of the eigh-
teen combinations: only the social network changed. The
results are shown in Figure 4.

ring(A=20) (-
ring(A=40) |-
ring(A=60) (-
A2A(A=20) -
A2A(A=40) -
A2A(A=60) |-
ER.33(A=20) |
ER.33(A=40) |-
ER.33(A=60) |-
ER.66(A=20) |-
ER.66(A=40) |-
ER.66(A=60) |-
WS(A=20) |-
WS(A=40) |-
WS(A=60) |-
BA(A=20) -
BA(A=40) -
BA(A=60) -

5 10 15 20

Average Percent Error

Figure 4: Informative-RTSI and Network Independence

Although the informative-RTSI estimate outperformed
the WoC estimate in all cases, with a population size of 20,
there is wider variation in accuracy of tracking. This can
be attributed to the sparsity of coverage of, and fortune of
location within the environment. Interestingly, the median
performance of a ring network was on a par with other net-
works, but evidently there were some random distributions
that even with a maximum hop-count of 6, made it harder for
accurate information to percolate across the network. Even
then, accuracy improved with larger group sizes.

However, with population sizes of 40 and 60, the “graph
is essentially flat”, the median and quartile ranges are very
similar. This is evidence to support the hypothesis that track-
ing with informative-RTSI is independent of network type.

probability p.,. See Prettejohn et al. (2011).

3The algorithm for generating a scale-free network starts with
an all-2-all connected network of m¢ nodes and successively links
new nodes to m existing nodes with a probability proportional to
the existing node’s number of links. See Prettejohn et al. (2011).



Experiment 3: The Emergence of Expertise

In this experiment, we investigated the relationship between
network degree (the number of links to other agents) and
self-confidence, using a scale-free (Barabdsi-Albert) net-
work with 40 agents.

Recall that network generation algorithm starts with two
parameters, mg and m, where m0 is the number of agents in
the base network which are all connected to each other, and
each new agent thereafter is connected to m other already-
networked agents with a probability proportional to the ex-
isting agent’s current link proportion. The result is that the
network has an exponential degree distribution.

Here, we have used mg = 3 and m = 2. A first result
for three separate runs over 720 cycles is shown in Figure 5,
which plots self-confidence against the percentage individ-
ual error (deviation of sensed signal from ambient signal).
The black triangles are the agents in my, the red triangles
are the rest. This suggests that self-confidence is not corre-
lated with network centrality.
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Figure 5: Informative-RTSI and Self-Confidence. Scale-free
(Barabasi-Albert) network, 3 runs, | A |= 40, mg = 3,m =
2. Black triangles: agents in my, red triangles: the rest.

A second result for the same three runs is shown in Fig-
ure 6. This plots (for the same agents) the ‘trustworthiness’
of an agent against its degree, where the trustworthiness of
the agent is the average trust that the agents in one agent’s
social network have in it. While not correlated with high
degree, generally agents with a high degree do have a high
trustworthiness. However, as the second graph shows, the
hub agents generally have the highest proportion of total
trust in the system: it is evident where the ‘social capital’
in the system resides.

Trustworthiness appears to be correlated with degree only,
pointing to the old adage “it is not what you know, but who
you know”. Furthermore, it brings us, in a sense, full circle:
we started with knowledge aggregation in classical Athens
and the importance of mechanisms for maintaining hetero-
geneity. These results suggest that even if expertise is not
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Figure 6: Informative-RTSI and Trustworthiness. Same ex-
perimental configuration as Figure 5.

well-connected, given adequate connectivity and an appro-
priate model of social influence, it is possible to access ex-
pertise for ‘the whole’ to know what ‘the parts’ know.

Experiment 4: The Cost/Saving of Expertise

In this experiment, we investigated the the ratio of sensing
to asking, i.e. in any round, what was the ratio of the num-
ber of agents that sensed the environment, to the number of
agents that asked another agent for its measurement of the
environment. The rationale for this is that, in general, it is
expected that the ‘cost’ of sensing and reasoning is greater
than that of communicating.

For this experiment, we used a Erdos-Renyi (random) net-
work with p = 0.33, a Watts-Strogatz (small-world) net-
work with £ = 3 and ¢, = 0.25, a Barabasi-Albert (scale-
free) network with mg = 3 and m = 2, each with net-
work sizes of 36, 64, and 100 agents. We were again testing
informative-RTSI only.

One result is shown in Figure 7. This shows at each time
point the rolling average for this and the previous 19 time-
points, of the number of agents that used their sensed value
as opposed to asking a neighbour. This is a graph for a
Barabasi-Albert network, but bith Erdos-Renyi and Watts-
Strogatz networks show the same profile. The again sug-
gests that the outcome of informative-RTSI is largely inde-



pendent of network topology. Moreover, the shape of the
graph demonstrates that the agents are engaging in signif-
icantly more ‘asking’ than ‘sensing’ (an even split would
have been a single horizontal line; more sensing than asking
would be the mirror image of the graphs).
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Figure 7: Sensing vs. Asking: Scale-free (Barabdsi-Albert)
network, my = 3, m = 2, rolling average of 20 time-points.

However, the particularly interesting feature is the con-
vergence value, which suggests that only a few agents are
doing most of the work. This observation needs to be pur-
sued in further research, as well as looking at the ‘amount’
of asking that happens in a network, i.e. how many delega-
tions occur before an agent uses its sensed value. This is of
course linked to the value specified for the hop-count.

Summary and Conclusions

This inter-disciplinary work has brought together two lines
of work: one from multi-agent systems and models of trust,
opinion formation and self-organisation, the other from so-
cial psychology and models of social influence, dynamic
networks and distributed information processing. We have
used techniques from the former to specify and implement
the first-pass of a new theory (RTSI) from the latter.

We have also implemented a multi-threaded Qu-Prolog
simulator and used it to conduct some experimental in-
vestigations into what we distinguished as informative-
RTSI, where the agents try to track a ‘correct’ signal, and
conformative-RTSI, where the agents try to track a ‘com-
munity preference’ signal. Our analysis demonstrates that
a collective of agents using RTSI in ‘informative mode’,
the collective can identify expertise within it that enables
it to become an effective ‘multi-dimensional distributed in-
formation processing unit’ that can outperform the ‘wisdom
of crowds’ aggregate in tracking the ‘true’ signal (i.e. the
base signal). However, in ‘conformative’ mode, the collec-
tive can identify expertise that enables it to more effectively
track this same ‘wisdom of crowds’ aggregate, i.e. the ‘com-
munity’ signal.

There are several limitations in the current work. Firstly,
for reasons of space, we have not situated this work fully
in the literature from several disciplines (including com-
plex systems, ALife, computational social choice, etc.)
that has investigated information-seeking behaviour in so-
cial networks. This includes work from marketing Roch
(2005); Van den Bulte and Joshi (2007), diffusion of in-
novations Nan et al. (2014), and social networks (Bonchi,
2011), as well as work aiming to quantify the power of influ-
encers (Cha et al., 2010; Bakshy et al., 2011) and to under-
stand their role in forming public opinion (Watts and Dodds,
2007; Jalili, 2013). The wisdom of crowd phenomenon has
been the focus of several works, for example (Mendes et al.,
2010; Yampolskiy and El-Barkouky, 2011). A particular is-
sue is whether an asymmetry in crowd members’ skills may
lead to the situation when more skilled sub-crowds beat the
wisdom of the whole crowd (Goldstein et al., 2014).

Although a distinction between these previous works and
RTSI can be drawn, because the analyses are predominantly
made from the perspective of the source of influence, we
also think this first-pass implementation of RTSI has added
to this literature: notably in the ‘informative’ and‘ ‘con-
formative’ modes of signal tracking, the independence of
network topology, the correlation of network centrality and
trust, and the distribution of effort across the network. How-
ever, the second limitation acknowledges that this is a first-
pass: RTSI is a much richer theory than has been imple-
mented here, and more of its features need to be imple-
mented and explored in QuRTSI.

A third limitation is also an opportunity. We used sine
waves to try to generate a signal that could not easily be
learnt. However, an alternative would be to use an n-bit bi-
nary signal, whose proximity to a scrambler would increase
the likelihood of a bit switching. It might then be possi-
ble to analyse the properties of transmission and process-
ing using information theory, and develop an information-
theoretic basis of RTSI. This might also enable an alternative
approach to experimentation: here we have set up a model
based on RTSI and explore how it behaves, but with this ap-
proach experiments could be designed to (attempt to) falsify
predictions made by the theory.

However, beyond these theoretical and practical results
and limitations, the primary contribution of this paper is
twofold. The first is to have demonstrated how a theory of
human psychology and human behaviour can be represented
in computational form; while the second is to have shown
that agent-based modelling can be used to animate that the-
ory of human psychology and shed some interesting light on
knowledge management in organisations.

Acknowledgements

This research was supported by Narodowe Centrum Nauki
NCN DEC-2011/02/A/HS6/00231. Thanks to the anony-
mous reviewers for many encouraging and helpful remarks.



References

Allport, G. W. (1937). Personality: A psychological interpretation.
Henry Holt & Co.

Asaro, P. (2019). Ai ethics and predictive policing: From mod-
els of threat to an ethics of care. IEEE Technol. Soc. Mag.,
38(2):40-53.

Asch, S. E. (1956). Studies of independence and conformity: I. a
minority of one against a unanimous majority. Psychological
monographs: General and applied, 70(9):1.

Bakshy, E., Hofman, J. M., Mason, W. A., and Watts, D. J. (2011).
Everyone’s an influencer: quantifying influence on twitter. In
Proc. 4th ACM Int. Conf. on Web Search and Data Mining,
pages 65-74.

Baldwin, J. R. and Hunt, S. K. (2002). Information-seeking behav-
ior in intercultural and intergroup communication. Human
Communication Research, 28(2):272-286.

Bonchi, F. (2011). Influence propagation in social networks: A
data mining perspective. IEEE Intelligent Informatics Bul-
letin, 12(1):8-16.

Cha, M., Haddadi, H., Benevenuto, F., and Gummadi, K. P. (2010).
Measuring user influence in twitter: The million follower fal-
lacy. In Proc. 4th AAAI Conf. on Weblogs and Social Media.

Cialdini, R. (2016). Pre-Suasion: A Revolutionary Way to Influence
and Persuade. Simon & Schuster.

Davenport, T. and Prusak, L. (1998). Working knowledge [elec-
tronic resource] : how organizations manage what they know.
Harvard Business School Press.

Dyer, L. M. and Ross, C. A. (2008). Seeking advice in a dynamic
and complex business environment: Impact on the success
of small firms. Journal of Developmental Entrepreneurship,
13(02):133-149.

Goldstein, D. G., McAfee, R. P, and Suri, S. (2014). The wisdom
of smaller, smarter crowds. In Proc. 15th ACM conference on
Economics and Computation, pages 471-488.

Hussain, A., Ali, S., Ahmed, M., and Hussain, S. (2019). The anti-
vaccination movement: A regression in modern medicine.
Cureus, 10(7):€2919.

Jalili, M. (2013). Effects of leaders and social power on opinion
formation in complex networks. Simulation, 89(5):578-588.

List, C. and Goodin, R. (2001). Epistemic democracy: Generaliz-
ing the condorcet jury theorem. Journal of Political Philoso-
phy, 9(3):277-306.

Macbeth, S. and Pitt, J. (2015). Self-organising management of
user-generated data and knowledge. Knowledge Engineering
Review, 30(3):237-264.

Mendes, P. N., Passant, A., and Kapanipathi, P. (2010). Twarql:
tapping into the wisdom of the crowd. In Proc. 6th Interna-
tional Conference on Semantic Systems, pages 1-3.

Milgram, S. (1963). Behavioral study of obedience. The Journal
of abnormal and social psychology, 67(4):371.

Nan, N., Zmud, R., and Yetgin, E. (2014). A complex adaptive sys-
tems perspective of innovation diffusion: an integrated theory
and validated virtual laboratory. Computational and Mathe-
matical Organization Theory, 20(1):52-88.

Nowak, A., Vallacher, R., Rychwalska, A., Roszczyriska-
Kurasiiska, M., Ziembowicz, K., Biesaga, M., and
Kacprzyk-Murawska, M. (2020). Target in Control: Social
Influence as Distributed Information Processing. Springer.

Ober, J. (2008). Democracy and Knowledge. Princeton Univ. Press.

Petty, R. and Cacioppo, J. (1986). The elaboration likelihood
model of persuasion. Advances in Experimental Social Psy-
chology, 19:123-205.

Prettejohn, B., Berryman, M., and McDonnell, M. (2011). Meth-
ods for generating complex networks with selected structural
properties for simulations: a review and tutorial for neurosci-
entists. Front. Comput. Neurosci., S(art.11):1-18.

Roch, C. H. (2005). The dual roots of opinion leadership. The
Journal of Politics, 67(1):110-131.

Sieloff, C. (1999). “if only hp knew what hp knows”: the roots
of knowledge management at hewlettpackard. Journal of
Knowledge Management, 3(1):47-53.

Van den Bulte, C. and Joshi, Y. V. (2007). New product dif-
fusion with influentials and imitators. Marketing science,
26(3):400-421.

Watts, D. J. and Dodds, P. S. (2007). Influentials, networks, and
public opinion formation. Journal of consumer research,
34(4):441-458.

Yampolskiy, R. V. and El-Barkouky, A. (2011). Wisdom of artifi-
cial crowds algorithm for solving np-hard problems. Interna-
tional Journal of Bio-inspired computation, 3(6):358-369.



