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Mathematical models are simplifications of the real sys-
tems. The value of a mathematical model lies in its ability to
reasonably model real-world phenomena. Cellular automata
(CA) are a sub-class of agent-based models (ABM) that have
been quite successful in modelling interacting real systems
such as traffic flows, crowd behaviour, ecology, epidemics,
chemical systems, etc. However, in the literature, CA mod-
els have been criticized as oversimplifications of reality and
those that have relaxed rules have been criticized as not pure
CA. In this paper, we show a procedure for calibrating a
probabilistic-CA (P-CA) model to real system.

CA are discrete in space and in time which makes them
ideal for high performance computer simulations. The time
evolution of CA depends on initial-value-conditions and
boundary-value conditions of the simulation. The introduc-
tion of probabilistic state update rules in P-CA made the
initial-value conditions in P-CA irrelevant. The focus in P-
CA models lie in the generation of consistent macroscopic
distributions irrespective of initial-value-conditions. Conse-
quently, not much effort has been put in calibration of P-CA
to model real systems. In this paper, we investigate a simple
scenario of open system and perform calibration of P-CA
model such that the model can be validated as a model for
real-world system.

Model verification, calibration and validation are im-
portant steps in the development of a credible simulation.
Model verification implies building the model correctly, i.e.,
we need to accurately transform the model concept from
simulation flowchart into a computer program. Model cali-
bration is the process of obtaining a desired confidence level
on the model such that its results are considered reasonable
for the objective it was developed for. This involves selec-
tion of right model parameters (Cj;,,,) and the right input
data for the simulation (/s;,,,). Model validation is the pro-
cess of making sure that the output data obtained from the
simulation driven by input data are close to real-system out-
put data. When comparing the system and the model output
data, if there are substantial differences in the comparison,
some correction factors are added to the model input data.
Thereafter, the model and the system are compared again.
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Figure 1: Traffic flow counts measured at a cell (red) when
n cars are running on a single lane over a simulation time 7.

This iterative process of input modification to meet simula-
tion output that is close to real system output is called cali-
bration.

In this paper, we consider a one-dimensional P-CA
model called Nagel-Schreckenberg (NaSch-)model (Nagel
and Schreckenberg, 1992). NaSch-model is a regarded as
a prototype CA-model for modelling traffic flows with the
smallest set of state update rules: (i) acceleration, (ii) decel-
eration due to other cars, (iii) random deceleration to model
variability in driving behaviour and (iv) position update.

Fig. [1] shows a one-dimensional lane where vehicles
move from point A to point B. This is the simplest exam-
ple of real-world traffic scenario. The model parameters to
calibrate in the NaSch-model are maximum limiting speed
(vmax), safety distance (d) and state transition probability
(also known as breaking parameter, p). We synthetically
generate ground-truth data by selecting model parameters
and a vehicle initialization scheme ® 4 at point A. ® 4 is fed
to the simulation as input data. We consider the total num-
ber of cars n = 92 running on a lane consisting of L = 100
cells with total simulation runtime 7" = 600. The simulation
time is discretized into 20 bins such that w = 30 time steps
are used to aggregate vehicle count in each bin.

The ground-truth input data ®% is generated by sampling
from two non-normalized gaussian distributions N(8,2)
and N (14, 3) as shown in Fig. [2]. In the calibration pro-
cedure, we need to calibrate both model parameters as well
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Figure 2: Synthetically generated ground-truth input data

(97 for the simulation.

as the vehicle initialization scheme ® 4 at point A such that
the distribution of the simulation traffic-count at point C
matches with the ground truth distribution of the simulation
traffic-count.

For the purposes of calibration, we use genetic algorithms
(GA) which has proven to be a successful stochastic search
method for evolving CA. The algorithmic loop for GA is
shown in Fig. [3]. GA employs a set of genetic operations
such as mutation, crossover, etc. for generating new set of
input data for the simulation. For a tutorial on the appli-
cation of GA in practice, we refer to (Asteroth and Hagg,
2015).

In our experiment, we define a discrete-valued genome
which is a vector of traffic counts. This 1 x 20 vector de-
fines the vehicle initialization scheme at point A. The values
in the genome define the number of cars that are initialized
within that time window during the simulation run. The up-
per bound for each gene in genome is set to the time-interval
within one time bin (w = 30). This upper-bound ensures
that we do not have multiple cars in the same cell at the same
time thereby keeping the model collision-free. We separate
the car initialization time within the bin evenly so that the
simulation results between two simulations can be meaning-
fully compared. We do not use crossover operation for input
data calibration as it would result in the number of vehicles
in the simulation to be not conserved.

We only show the results for calibration of the input data
in this paper. The model parameter values are retained as in
the original NaSch-model (Nagel and Schreckenberg, 1992)
as vmax = 9, a = 1,d = 1 and p = 0.3. These parameters
were not included as part of calibration procedure but fed
to the simulation instead. Having set the model parameters
we optimized the GA for finding the right set of input data
® 4 such that the traffic count at position C will match the
generated ground-truth data. We use root mean squared er-
ror (RMSE) as cost function for the optimization procedure.
Since there is inherent randomness in the NaSch-model, we
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Figure 3: Procedural steps in genetic algorithm
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Figure 4: Single lane traffic flow distribution generated at
point C compared to synthetically generated ground-truth.

ran 20 simulations for each input data and selected the so-
Iution that generated distribution at point C closest to the
average value of the 20 distributions.

We selected population size of 32 for GA with 4 elite solu-
tions. Elite solutions are the best performing solutions in the
population which as retained in the next iteration of GA to
prevent loss of good solutions in the search. Fig. [4] shows
the calibration result of the best solution of GA after 3000
iterations. The best individual has the RMSE error of 1.12
indicating that there is on average 1 mismatched vehicle per
bin. We claim that this accuracy in the solution is reason-
able. Due to the stochastic nature of NaSch-model, it is not
possible to resolve the error below 1 mismatched vehicle per
bin. The exception to this rule are the deterministic limits of
p = 0and p = 1 in the NaSch-model.

We note that due to the stochastic nature of probabilistic
CA, the calibration of input data becomes increasingly more
unreliable as we increase the simulation time and space (dis-
tance between point A and C). Furthermore, the variation
in distribution generated for different runs with same input
data @ 4 increases as we increase the value of state transition
probability in the model.

In future work, we will demonstrate a complete calibra-
tion procedure that will fine tune not only the input data but
also the model parameters simultaneously. We will also in-
vestigate how well can we scale up the P-CA models such
that calibration and validation can be performed on the real
world highway sections.
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