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Abstract

Few studies have been carried out to investigate the
Patient’s involvement in the decision-making process
in the healthcare system. Here, we perform ad-
vanced analysis as a follow up to our previously de-
veloped mathematical healthcare business model in-
volving three populations. The advanced model con-
tributes to healthcare economic modelling by ana-
lyzing the stochastic cooperation behavior of agents
within three proposed populations: Public Healthcare
Providers, Private Healthcare Providers and Patients.
By employing agent-based simulations and methods
from Evolutionary Game Theory (EGT), we study co-
operation outcomes within each population. We study
the effect of increasing mutation or behavioural ex-
ploration rate and that of unequal population sizes of
healthcare providers and patients. We show that the
former introduces more randomness in agents’ behav-
iors enabling cooperation to emerge in more difficult
conditions. We also find that, when the Providers’ ca-
pacity is limited (i.e., small population size), the Pa-
tients exhibit lower levels of cooperation, implying a
more difficult cooperation dilemma that needs solving.

Introduction
The healthcare system in the UK is regulated by the
Department of Health where explicit rules, activi-
ties and mechanisms are imposed and enforced by
the state to manage social behavior (Saltman, 2002).
From the perspective of UK health policy, the ten-
dency is to understand an incentive as an economic
inducement or benefit, whether tangible or intangi-
ble, resulting from a behavior that impacts the perfor-
mance of the healthcare system, whether positively or
negatively. This narrow definition tends to exclude
non-monetary incentives or benefits (Grant, 2003;
Saltman, 2002). This dilemma can be solved pragmat-
ically by the introduction of Evolutionary Game The-
ory (EGT). EGT provides various examples that can
be followed such as the Public Goods Game (PGG)
where individuals can get a share of the benefits of
cooperation equivalent to their collective contribution
to upholding the process (keep it going).

In this research, we investigate the evolution of co-
operation in a complex system, namely the healthcare
system in England, which is made up of populations

consisting of different healthcare providers interact-
ing with patients. Our investigation examines individ-
ual agents’ behaviors as viewed by an external poli-
cymaker, in this case, the Health Department. Gener-
ally, policies are initiated and managed by the Health
Department, which allocates a specific budget to in-
terfere.

To this end, our analysis here is carried out based
on a baseline model we developed in (Alalawi et al.,
2019). This previous work focuses on numerical anal-
ysis of the proposed healthcare model, studying evo-
lutionary dynamics of three well-mixed finite popu-
lations. The analytical approach we adopted therein
relied on the assumptions of rare behavioral mutation
by the agents, and that all populations having an equal
size. Our finding shows that agents from all three pop-
ulations tend to not cooperate (i.e. defect) (Alalawi
et al., 2019). While these simplified assumptions al-
lowed us, as a very first step, to provide clear math-
ematical analysis, they prevented us from analysing
some important factors. Namely, mutation or behav-
ioral exploration, where agents can freely experiment
with new behaviors, has been shown to play an im-
portant role in enabling cooperation in the context of
social dilemmas (Duong and Han, 2019; Antal et al.,
2009; Traulsen et al., 2009; Han et al., 2012). As the
world is facing a rapid increase in populations, most
healthcare capacity is struggling to cope with atten-
dant mounting demand and to accommodate growing
populations’ needs. Moreover, some scholars have
warned that, in reality, healthcare providers might not
be able to meet the treatment demand from all patients
(Ewbank et al., 2020). It is, therefore, viable to in-
vestigate this intensifying trend and study the ratio of
population to hospital bed availability. Currently in
England, UK, the number stands at 474 patients per
hospital bed 1.(Office for National Statistic, 2020)

Therefore, in this paper, we develop agent-based

1England population number was obtained from Office
for National Statistic ONS (correct as of mid-2019), avail-
able at:https://bit.ly/2MCb3yc. The number of hospital beds
in England (correct as of 2018/9) was calculated based on
data provided by the King’s fund report “NHS hospital bed
numbers: past, present, future”: https://bit.ly/2UfgeZ0; (ac-
cessed 6 June 2020).



simulations of this baseline model to investigate how
relaxing the above-mentioned assumptions affects the
cooperation outcomes in providers’ and patients’ pop-
ulations. Namely, we seek to develop a more in-
sightful understanding of the dynamical behavior of
agents in each population, the effects of applying a
large mutation/exploration rate on the abundance of
cooperation, and the influence of reduced sizes of the
healthcare providers’ population on the agent’s behav-
ior within the dynamic system and their population.

The rest of this paper is structured as follows. Re-
lated Work section reviews the most relevant litera-
ture. Model and Methods section presents our health-
care model and methods applied. Results and Discus-
sion section discusses agent-based simulation results.
The conclusion summarises our findings and explores
their implications for future work.

Related Work
Researchers eager to understand the behavior of dif-
ferent agent representations within the healthcare sys-
tem use AI (Ziuziański et al., 2014), game the-
ory (Agee and Gates, 2013; Wu et al., 2016), mul-
tiagents system (De and Gelfand, 2017) and big
data (Murdoch and Detsky, 2013) which are used
to predict and understand behaviors within systems.
However, little effort has been made to study the dy-
namics of cooperation and other decision making in
the healthcare domain, which usually involves differ-
ent actors in the decision making processes. Our pre-
vious work (Alalawi et al., 2019) and this work aim to
bridge this important gap by resorting to population-
based methods from EGT to develop an understand-
ing of the dynamics of cooperative behaviour in this
domain.

The rapid development in research on the learning
of social behavior has significantly increased our un-
derstanding of the dynamic interaction among indi-
viduals from different populations (Sigmund, 2010).
Cooperation is one of the fundamental aspects to
measure the strength and dynamism of a popu-
lation (Smith, 1974; Kurokawa and Ihara, 2009;
Encarnação et al., 2016). It can be studied by apply-
ing EGT to different mechanisms, such as reciprocal
behaviors, kin selection and costly incentives (Sig-
mund, 2010; Hofbauer and Sigmund, 1998). EGT has
been successfully used across major scientific fields
such as biology, ecology, economics, psychology and
mathematical computation (Sigmund, 2010; Hofbauer
and Sigmund, 1998).

Model and Methods
Healthcare Model
In this section, we summarise the model presented
in (Alalawi et al., 2019), where we consider three
populations: Public providers P1, Private providers
P2 and Patients P3. While P1 represents the NHS

Parameters' description Symbol
Reputation benefit for the Public and
Private healthcare providers

bR

Patient's benefit bP
Cost of investment spent by the Pub-
lic/Private healthcare provider

cI

Cost of treatment acquired by the
healthcare provider

cT

Cost of healthcare management cM
Extra Patient's benefit when both
providers cooperate

ε

Strategies Payoffs
P1 P2 P3 Public Private Patient
C C C bR−cI−cT bR−cI−cM bP +εbP
C C D −cI −cI 0
C D C bR−cI−cT 0 bP
C D D −cI 0 0
D C C 0 bR−cI−cM bP − cT
D C D 0 −cI 0
D D C 0 0 −cT
D D D 0 0 0

TABLE 1: The healthcare model (Public: P1, Private:
P2, Patient: P3).

or the public healthcare providers, P2 represents in-
dependent healthcare providers P2 selling healthcare
services, and P3 represents those who seek personal
treatments. Agents from each population (P1, P2 and
P3 can choose from two strategies: provide/accept
sustainable treatment identified as cooperating, other-
wise the game will be dominated by alternative treat-
ments from other providers. On each game encounter
or iteration, an agent's payoff is acquired based on
the strategy played by each agent/individual from the
three populations. In this game, an interaction hap-
pens among three agents, one from each of the three
populations, see Table 1.

An agent in each of the three populations has two
strategies, cooperate (C) and defect (D). Here the
strategy coincides with the action of an agent, despite
the fact that there is only one decision to make, which
can be interpreted as follows.
Public healthcare providers:

• C: offers treatment paid for from taxpayers' money,
which consists of paying a cost cI , and in return
gets a reputation benefit.

• D: does not want to pay for the treatment.

Private healthcare providers:

• C: offers treatment either paid by Public (when
Public cooperates) or self-paid by Patient (so the
main cost involved is management cost cM ), and
obtains a reputation benefit bR. In case of cooper-
ation with the Patient, Private commits to investing
cI from its revenue.



• D: does not want to offer the treatment.

Patient:

• C: accepts being treated and pays for the treat-
ment cT when treated by the Private; Patient ob-
tains health benefit bP if at least one provider coop-
erates and extra health benefit when both providers
cooperate ε.

• D: rejects the treatment and looks for alternative
treatment mostly overseas, where above conditions
are correct, and: bP > 0, ε > 0 and cT > 0.

Thus, given the strategies of players in each popu-
lation, there are 8 possible strategic combinations or
scenarios, represented by XYZ where X, Y, Z can be
either C or D. We summarize a few of them below
(full details can be found in (Alalawi et al., 2019))

• CCC: individuals from all three populations choose
to cooperate. The Public pays for the treatment
provided by a Private healthcare provider and the
Patient accepts the provided treatment in pursuit
of her/his own benefit or well-being. The Public,
which bears the costs of investment and pays for the
Patient's treatment (cI + cT ), covered from its allo-
cated budget, gains a reputation benefit bR. Rep-
utation benefits are derived from the Patient's sat-
isfaction with the provided service. On the other
hand, the Private healthcare provider will provide
the required treatment to the Patient and receive
the payment covering the costs from the Public.
The cost of investment cI of the Private healthcare
provider is to invest in staffing and healthcare fa-
cilities, while cM refers to administrative and op-
erational costs. Also, the Private provider will ob-
tain a reputation benefit with the Public bR. Pa-
tient gets extra health benefit εbP as both healthcare
providers are cooperating (ε represents a synergis-
tic factor).

• DDD: this scenario consists of all three agents
choosing not to interact with one another, thus all
the agents get a zero payoff.

Method: Evolutionary Dynamics for Three
Populations
EGT method is adopted to study the evolutionary dy-
namics and interactions among individuals from three
distinct finite populations: P1, P2 and P3. The pop-
ulations are of fixed sizes N1, N2 and N3, respec-
tively. In each time step, from a randomly selected
population, a randomly selected individual A with fit-
ness fA imitates another randomly selected individual
B with fB fitness using the pairwise comparison rule,
a popular and standard approach to implementing so-
cial learning in EGT (Sigmund, 2010; Traulsen et al.,
2007). Namely, the probability ρ that A adopts B's
strategy is given by the Fermi's function

ρ = [1 + e−β[fB−fA]]
−1
, (1)

FIGURE 1: The cooperation level in each of the three
populations as a function of the sectors’ benefit bR and
patient’s benefit bP . Other parameters: cI , cT , cM =
1;N1, N2, N3 = 100; ε = 0.2;µ = 10−4; β = 0.1.

where β > 0 represents the ‘intensity of selection’or
‘imitation strength’; β = 0 represents neutral drift
where imitation decision is random, while for β →∞
the imitation decision is increasingly deterministic.

When mutation or behavioral exploration (Gokhale
and Traulsen, 2010; Duong and Han, 2019) is not rare
(which is different from the analysis in (Alalawi et al.,
2019)), we consider that, before A considers to imitate
B, with a probability µ, it changes to a randomly se-
lected strategy from its behavioural space (in this case,
C or D). That is, with probability (1− µ) A considers
to imitate B as above.

Individuals in each population have the choice to
C or to D in a paradigm shift fashion. As described
above, there are eight possible paradigms or scenarios
corresponding to the the eight possible combinations
of the strategies within the three populations: CCC,
CCD, CDC, CDD, DCC, DCD, DDC, DDD. Denot-
ing the numbers of cooperators in P1, P2 and P3 by
x, y, and z, respectively, the payoff of each strategy
can be written as follows:

PPublic
s (x, y, z) = Psyz

PPrivate
s (x, y, z) = Pxsz

PPatient
s (x, y, z) = Pxys

 Pairwise comparison (2)

where Pxyz is the payoff for the strategy selected by
individuals from one of the stated populations, and
(x,y,z) represents the selected strategies C or D. For
instance, individuals from P1 have the options to play
C or D. The selected strategy will replace the s at x
vertex, while y and z vertices remain unchanged for
selected strategies for the Public population in this in-
stance.

Public→ f(Cyz) > PDyz
Private→ f(xCz) > PxDz
Patient→ f(xyC) > PxyD

(3)

Agent-based Simulations
As mutation is not rare, we perform agent-based sim-
ulations to study the evolutionary dynamics. Initially,
agents in the three populations are given a random
strategy (C or D). In each generation or time step,
agents’ fitness is calculated as in Table. 1. Namely, the
fitness of an individual adopting a strategy s within a
population is derived from the average obtained from
the tripartite one-shot game described in Table 1. A
randomly selected individual in each game obtains



FIGURE 2: Typical simulation runs showing the cooperation levels over time in the three populations (red for
Public, blue for Private and green for Patient). The plots represent the frequency of cooperation adopted by the
populations for different values of bR and bP . Other parameters as in Figure 1.

an average payoff given by (Encarnação et al., 2016;
Santos et al., 2016):

fPublic
S (x, y, z) = yzPPublic

SCC + (1 − y)zPPublic
SDC +

y(1− z)PPublic
SCD + (1− y)(1− z)PPublic

SDD ,

fPrivate
S (x, y, z) = xzPCSCPrivate + (1 −

x)zPPrivate
DSC +x(1−z)PPrivate

CSD +(1−s)(1−z)PPrivate
DSD ,

fPatient
S (x, y, z) = xyPPatient

CCS +(1−x)yPPatient
DCS +

x(1− y)PPatients
CDS + (1− x)(1− y)PPatient

DDS ,

where fPS (x, y, z) represents agents’ average pay-
off in a population P while adopting strategy s, as-
suming that the population is present in the vertices
(x,y,z). PSABC denotes the payoff that an individual
playing in a group with a strategy profile derives from
state S where public plays A, private plays B and pa-
tient plays C . These payoffs are shown in Table 1.

Each simulation of the stochastic modelling runs
for a number of generations (at least 40,000), where a
stable state is reached in general (see examples in Fig.
2). To ensure accuracy, the accumulated results are
then averaged over the last 100 time steps, and further-
more, for each parameter configuration, the results
were averaged over 50 independent realisations. As
mutation is adopted in the simulations, no absorbed
monomorphic state is reached .

Results and Discussion
In this study we conduct agent-based simulations (see
Methods), where agents from the three populations
P1, P2 and P3 interact in a one-shot game and learn
how they influence the level of cooperation to sustain
cost-effective services and better patient satisfaction.

Figure 1 shows the cooperation levels adopted in
the populations for varying the sectors’ benefit bR and
patient’s benefit bP . In general, cooperation in all
populations is most abundant when both benefits are
sufficiently large. The two sectors have similar coop-
eration for the whole parameter space, except when
both benefits are small, where the private sector has a
slightly higher level of cooperation.

To better understand the detailed dynamics, in Fig-
ure 2 we show the evolution of cooperation over time
in each population for different combinations of the
benefits. Indeed, we can see that when bR is large
(see bR = 6, bottom row), all the three populations
quickly converge to full cooperation even for small

FIGURE 3: Frequencies of CCC for increasing mu-
tation rate, µ. It represents the trends of different bR
values for the stated value of bP on each plot. Other
parameters as in Figure 1.



FIGURE 4: Cooperation levels in three populations
for different values of µ. First column for P1, second
column for P2, and third column for P3. µ values are
as specified on the right side. Other parameters as in
Figure 1.

bP . For intermediate bR (see bR = 1, middle row), P1
converges to defection, while P2 still maintains some
level of cooperation and P3 have high levels of coop-
eration when bP is large (i.e. equals 3). When bR is
small, all populations converge to defection. That is,
P2 population is more willing to cooperate with P3
for quite low bP (where bP ≤ 1 and bR ≤ 1). On the
other hand, P3 requires better reputation benefit bR to
cooperate with P3 and provides the desired services.
As a consequence, P3 has to pay extra cost equiva-
lent to cT as represented in Table 1, i.e: DCC for the
Patient’s payoff (bP − cT ) compared to the other sce-
narios, CCC or CDC, where the cost equals zero.

The effect of mutation
We now study how increasing the mutation rate µ
affects the cooperation outcome in each population.
Note that so far we consider rare mutation or low mu-
tation rate µ = 10−4, recovering results from our pre-
vious work using small mutation dynamics (Alalawi
et al., 2019). Fig. 4 shows results for higher mutation
rates, namely, µ = 10−k, with k = 1.5, 1 and 0.5.
As expected, as larger mutation leads to greater levels
of randomness in agents’ behaviors, we observe more
defection in scenarios where cooperation is abundant
(high benefits), and vice versa, i.e. more cooperation
in previous scenarios with abundant defections. Inter-
estingly, for intermediate µ (µ = 10−1), P1’s coop-
eration mostly depends on P3’s benefit, while P2 is
more dependent on the reputation benefit. This obser-
vation can also be seen in Fig. 3, where we plot the
frequency of CCC. For sufficiently large µ, the fre-
quency of CCC always converges to 1/8 regardless of

FIGURE 5: Cooperation levels in each population
based on the ratio of hospital bed availability pro-
vided by healthcare providers compared to the size of
the P3 population(N3=100). Where the size of the
P1/P2 is: first row N1 = N2 = 10 and second row
N1 = N2 = 5). Other parameters as in Figure 1.

the values of the benefits, which is when all popula-
tions converge to 50% cooperation.

The effect of unequal population sizes
In reality, the availability of hospital beds is very lim-
ited for the increasing number of patients; i.e: winter
long waiting time in A&E or in a pandemic (e.g. as
is the case with the COVID-19). We study the ef-
fect of this factor by looking at different providers’
population size ratios to that of the Patient’s popula-
tion. Fig. 5 shows simulation results for two different
providers’ sizes, 10 & 5. The results reveal that P2
cooperates more with lower providers’ and patients’
benefits. Whereas the P1 population still prefers to
cooperate with higher reputation benefit bR. Con-
versely, P3 shows a significantly different behavior in
the decision making process by defecting upon low
health benefit 0.1 < bP < 1 and willing to cooper-
ate when bP < 0.1 and bP ≥ 1 for larger providers’
population sizes.

These observations show that, in a more realistic
setting where both P1 and P2 usually have a lower
capacity than what is required by P3, it is more diffi-
cult to ensure cooperation from the patients. That is,
the cooperation issue is more severe, which therefore
requires additional supporting mechanisms such as in-
centives to maintain cooperation. We are currently
studying this important setting.

Concluding Remarks
We have studied cooperation outcomes and evolution-
ary dynamics of a three-population healthcare model
using extensive agent-based simulations. We analyze
cooperation outcomes for incremental rate of muta-
tion, and compare them with those when it is rare, as
reported in our previous work. This result can rep-
resent realistic scenarios derived from some elective
treatments such as hip replacements (Moscelli et al.,



2016). To link our model to realistic scenarios it will
make use of data published by the NHS and comple-
mented with figures obtained from the Patient Reports
Outcome Measures (NHSDigital, 2019) and the Care
Quality Commission (CQC, 2019).

We found abundance of cooperation closely linked
with high benefits. Interestingly, for sufficiently high
mutation rates, more cooperation also emerged in sce-
narios that are previously dominated by defection in
all populations.

We explored the influence of reducing the size of
the healthcare provider population on cooperation be-
tween the three populations. We compared the results
of two different healthcare provider population sizes
(10 & 5) providing medical services to 100 patients.
We found that the Patient is less likely to cooperate
(small abundance) when the Provider populations are
small, which means that providers have a limited ca-
pacity to accommodate the patients’ needs. This find-
ing reveals a critical cooperation problem that needs
to be resolved. We plan to explore new mechanisms
to improve cooperation in this important and realistic
setting, such as via positive or negative incentives in
the form and institutional rewards and punishments.
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Ziuziański, P., Furmankiewicz, M., and Sołtysik-
Piorunkiewicz, A. (2014). E-health artificial intelli-
gence system implementation: case study of knowledge
management dashboard of epidemiological data in
poland. International Journal of Biology and Biomedical
Engineering, 8:164–171.


	Introduction
	Related Work
	Model and Methods
	Healthcare Model
	Method: Evolutionary Dynamics for Three Populations
	Agent-based Simulations

	Results and Discussion
	The effect of mutation
	The effect of unequal population sizes

	Concluding Remarks

